www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Beweis Ebene parallele Geraden
Beweis Ebene parallele Geraden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ebene parallele Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 24.06.2008
Autor: Casandra

Aufgabe
Zeigen Sie, dass im [mm] \IR³ [/mm] eine zu einer Ebene parallele Gerade in der Ebene liegt der mit ihr einen leeren Durchschnitt hat.  

Das bedeutet ja, dass g [mm] \in [/mm] E oder g [mm] \cap [/mm] E = [mm] \emptyset. [/mm]

Ich denke, dass ich dies indirekt beweisen muss.
Ich weiß ja das der Normalenvektor der Ebene und der Richtungsvektor der Geraden senkrecht zu einander sind, wenn ich als Voraussetzung g [mm] \parallel [/mm] E wähle.  Und sie sind dann ja echt parallel, wenn g [mm] \not\in [/mm]  E.

E: [mm] \overrightarrow{x}= \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] und g: [mm] \overrightarrow{x}= \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u}. [/mm]

Und [mm] \overrightarrow{u} [/mm] lässt sich als Linearkombination von [mm] \overrightarrow{a} \overrightarrow{b} [/mm] darstellen:
[mm] \overrightarrow{u} =r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b} [/mm]

Annahme: g [mm] \in [/mm] E:
[mm] \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm]
dann erhalte ich
[mm] \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] r_{1} *\overrightarrow{a} [/mm] - t * [mm] s_{1} *\overrightarrow{b} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t * [mm] s_{1}) *\overrightarrow{b} [/mm]

dann kann ich Q in die Geradengleichung von g einsetzen
und erhalte

[mm] \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] (r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b}) [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s * [mm] \overrightarrow{b} [/mm]

Dann liegt ja g in E. Kann man dies denn überhaupt so zeigen? Oder ist das vollkommener Blödsinn?
WEiß dann nicht weiter wie ich das andere zeigen kann.
Wäre nett wenn mir einer nen TIpp geben könnte.


Liebe Grüße Casandra


        
Bezug
Beweis Ebene parallele Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 24.06.2008
Autor: djmatey

Hallo,

also ehrlich gesagt frage ich mich nach dem Sinn dieser Aufgabe.
Wenn die Gerade nicht in der Ebene liegt, bedeutet "parallel" doch gerade, dass die Gerade die Ebene nicht schneidet.
Was gibt's da noch zu zeigen?
Oder habt Ihr den Begriff "parallel" in besonderer Weise definiert?

LG djmatey

Bezug
                
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Mi 25.06.2008
Autor: Casandra

Danke für deine Antwort!

Zur Parallelität haben wir folgendes:
Die Gerade g und die Ebene e heißen genau dann parallel, wenn sich der Richtungsvektor von g als Liniearkombination der Richtungsvektoren von e darstellen lässt.
Und wenn sie echt parallel sind, dass sie keinen Schnittpunkt haben.
Mehr haben wir nicht zur Parallelität von einer GEraden und einer Ebene.

Deswegen habe ich das so wie oben versucht.

Liebe Grüße

Bezug
                        
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Mi 25.06.2008
Autor: djmatey


> Danke für deine Antwort!
>  
> Zur Parallelität haben wir folgendes:
>  Die Gerade g und die Ebene e heißen genau dann parallel,
> wenn sich der Richtungsvektor von g als Liniearkombination
> der Richtungsvektoren von e darstellen lässt.

genau, und dabei kann die Gerade noch in der Ebene liegen. Also liegt sie entweder in der Ebene oder:

> Und wenn sie echt parallel sind, dass sie keinen
> Schnittpunkt haben.

und das heißt doch gerade, dass g [mm] \cap [/mm] E = [mm] \emptyset [/mm]

> Mehr haben wir nicht zur Parallelität von einer GEraden und
> einer Ebene.
>
> Deswegen habe ich das so wie oben versucht.
>
> Liebe Grüße


LG djmatey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de