www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Beweis Eigenwert
Beweis Eigenwert < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Eigenwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:06 Sa 06.02.2010
Autor: chipbit

Aufgabe
Zeige, dass jede lineare Abbildung [mm] A:\IR^3\to\IR^3 [/mm] mindestens einen reellen Eigenwert besitzt.

Hallöle,
also, ich weiß aufgrund des Hauptsatzes der Algebra ja, dass im Reellen ein Polynom n-ten Grades höchstens n Nullstellen hat. Nun frage ich mich eben, wie ich aber Obiges zeigen kann.
Durch den Satz weiß ich ja, das diese Abbildung höchstens 3 hat (da es Polynome mit höchstens drittem Grad im [mm] \IR^3 [/mm] gibt, oder?)
Reicht es zu sagen: Polynome ungeraden Grades mit reellen Koeffizienten haben immer mindestens eine reelle Nullstelle? Wobei ich das nicht glaube, das müsste ich ja dann nochmal beweisen.

        
Bezug
Beweis Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 06.02.2010
Autor: angela.h.b.


> Zeige, dass jede lineare Abbildung [mm]A:\IR^3\to\IR^3[/mm]
> mindestens einen reellen Eigenwert besitzt.
>  Hallöle,
>  also, ich weiß aufgrund des Hauptsatzes der Algebra ja,
> dass im Reellen ein Polynom n-ten Grades höchstens n
> Nullstellen hat. Nun frage ich mich eben, wie ich aber
> Obiges zeigen kann.
> Durch den Satz weiß ich ja, das diese Abbildung höchstens
> 3 hat (da es Polynome mit höchstens drittem Grad im [mm]\IR^3[/mm]
> gibt, oder?)
> Reicht es zu sagen: Polynome ungeraden Grades mit reellen
> Koeffizienten haben immer mindestens eine reelle
> Nullstelle? Wobei ich das nicht glaube, das müsste ich ja
> dann nochmal beweisen.

Hallo,

die Begründung hängt natürlich von dem ab, was Dir zur Verfügung steht.

Zwei Möglichkeiten:

1. Du weißt, daß bei reellen Polynomem die echt komlexen Nullstellen in Konjugiert-komplexen Paaren auftreten.

2. Möglichkeit: Stetigkeit und Verlauf der Polynomfunktionen dritten Grades, Zwischenwertsatz.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de