www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis Formel mit Fakultät
Beweis Formel mit Fakultät < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Formel mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Fr 03.09.2010
Autor: steppenhahn

Aufgabe
Beweise: [mm] $\left(\frac{n+1}{2}\right)^{n}\ge [/mm] n!$.
Hinweis: Benutze die bernoullische Ungleichung.

Hallo!

Ich habe versucht, diese Aufgabe zu lösen.
Vor allem wundert mich, dass ich die bernoullische Ungleichung anwenden soll, die ja eigentlich viel zu grob abschätzt.
Mit dem binomischen Lehrsatz habe ich es folgendermaßen hinbekommen:

IA: n = 0 ok.
Induktionsschritt: [mm]n\to n+1[/mm]
[mm]\left(\frac{(n+1)+1}{2}\right)^{n+1} = \frac{1}{2^{n+1}}*\sum_{k=0}^{n+1}\vektor{n+1\\ k}*(n+1)^{k}\ge \frac{1}{2^{n+1}}*\left[\vektor{n+1\\ n}*(n+1)^{n} + \vektor{n+1\\ n+1}*(n+1)^{n+1}\right][/mm]

[mm]= \frac{1}{2^{n+1}}*2*(n+1)^{n+1} = (n+1)*\left(\frac{n+1}{2}\right)^{n} \overset{IV}{\ge} (n+1)*n! = (n+1)![/mm].

Gibt es eine "direkte" Variante, die auch irgendwie die bernoullische Ungleichung benutzt?
Vielen Dank für Eure Hilfe!

Grüße,
Stefan

        
Bezug
Beweis Formel mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Fr 03.09.2010
Autor: abakus


> Beweise: [mm]\left(\frac{n+1}{2}\right)^{n}\ge n![/mm].
>  Hinweis:
> Benutze die bernoullische Ungleichung.
>  Hallo!
>  
> Ich habe versucht, diese Aufgabe zu lösen.
>  Vor allem wundert mich, dass ich die bernoullische
> Ungleichung anwenden soll, die ja eigentlich viel zu grob
> abschätzt.
>  Mit dem binomischen Lehrsatz habe ich es folgendermaßen
> hinbekommen:
>  
> IA: n = 0 ok.
>  Induktionsschritt: [mm]n\to n+1[/mm]
>  
> [mm]\left(\frac{(n+1)+1}{2}\right)^{n+1} = \frac{1}{2^{n+1}}*\sum_{k=0}^{n+1}\vektor{n+1\\ k}*(n+1)^{k}\ge \frac{1}{2^{n+1}}*\left[\vektor{n+1\\ n}*(n+1)^{n} + \vektor{n+1\\ n+1}*(n+1)^{n+1}\right][/mm]
>  
> [mm]= \frac{1}{2^{n+1}}*2*(n+1)^{n+1} = (n+1)*\left(\frac{n+1}{2}\right)^{n} \overset{IV}{\ge} (n+1)*n! = (n+1)![/mm].
>  
> Gibt es eine "direkte" Variante, die auch irgendwie die
> bernoullische Ungleichung benutzt?
>  Vielen Dank für Eure Hilfe!
>  
> Grüße,
>  Stefan

Hallo,
das erste Glied der linken Seite lautet beim binomischen Satz [mm] (\bruch{n}{2})^n [/mm] (also n gleiche Faktoren [mm] \bruch{n}{2}). [/mm]
Der Term n! hat die Faktoren von 1 bis n; diese Faktoren besitzen einen Mittelwert m. Die anderen Faktoren der Fakultät lassen sich von m aus gesehen schreiben als m-1, m+1, m-2, m+2 ... (oder - je nachdem, om m selbst eine natürliche Zahl ist oder nicht- auch als m-0,5; m+0,5; m-1,5; m+1,5 usw.
Klingt nach einer Abschätzung über die dritte binomische Formel, oder?
Vermutlich muss aus der zweite Summand aus dem binomischen Satz noch einbezogen werden.
Gruß Abakus

Bezug
        
Bezug
Beweis Formel mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Sa 04.09.2010
Autor: reverend

Hallo Stefan,

ich sehe auch keinen Weg, der am Haus von Jakob Bernoulli einkehrt.

Die Idee von abakus geht aber auch ohne das Binomialgedöns.

Für gerade n=2k untersuchst Du, ob bei der Ausmultiplikation der Fakultät "von außen" folgendes gilt:

[mm] \left(\bruch{n+1}{2}\right)^\blue{2}\ge{a(n-a+1)} [/mm]

pardon, da fehlte das Quadrat!

Dabei ist [mm] a\in\IN, a\le\bruch{n+1}{2} [/mm]

Das ist leicht zu zeigen. Und wenn mans dann recht bedenkt, hat man die ungeraden n=2k+1 doch gleich mit erledigt, auch wenn man den alleinstehenden "mittleren Faktor" [mm] k+1=\bruch{n+1}{2} [/mm] eigentlich nicht hätte quadrieren müssen, um die einzige Gleichheit zu finden.

Alles klar?
Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de