www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Beweis Injektiv/Surjektiv
Beweis Injektiv/Surjektiv < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Injektiv/Surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Sa 17.11.2012
Autor: harlequix

Aufgabe
g:a -> b und g:b-> c seien beliebige Abbildungen. Folgende Aussagen sind zu beweisen:

ist f [mm] \circ [/mm] g bijektiv, so ist g injektiv und f surjektiv
ist g surjektiv und f bijektiv, so ist f [mm] \circ [/mm] g injektiv



Ich steh bei dieser Aufgabe völlig auf dem Schlauch. Ich kann zwar zwar den Beweis für injektivität führen( das waren noch zwei weitere Sätze), aber ich habe keine Idee wie ich die Surjektivität beweisen soll. Ich weiß , was die surjektiv meint, weiß aber nicht, wie ich diese Eigenschaft mathematisch ausdrücken soll

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Injektiv/Surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Sa 17.11.2012
Autor: tobit09

Hallo harlequix und herzlich [willkommenmr]!


> g:a -> b und g:b-> c seien beliebige Abbildungen. Folgende
> Aussagen sind zu beweisen:

Soll es [mm] $f\colon b\to [/mm] c$ heißen? Davon gehe ich jetzt mal aus.

> ist f [mm]\circ[/mm] g bijektiv, so ist g injektiv und f surjektiv
>  ist g surjektiv und f bijektiv, so ist f [mm]\circ[/mm] g injektiv

Letzteres stimmt nicht. Steht da am Ende surjektiv statt injektiv?


> Ich steh bei dieser Aufgabe völlig auf dem Schlauch. Ich
> kann zwar zwar den Beweis für injektivität führen( das
> waren noch zwei weitere Sätze), aber ich habe keine Idee
> wie ich die Surjektivität beweisen soll. Ich weiß , was
> die surjektiv meint, weiß aber nicht, wie ich diese
> Eigenschaft mathematisch ausdrücken soll

Nehmen wir mal die Surjektivitätsaussage von folgendem Teil:

> ist f [mm]\circ[/mm] g bijektiv, so ist g injektiv und f surjektiv

[mm] $f\circ [/mm] g$ surjektiv bedeutet:

     Für alle [mm] $C\in [/mm] c$ existiert ein [mm] $A\in [/mm] a$ mit [mm] $f\circ [/mm] g(A)=C$.

Das ist Teil der Voraussetzung.

$f$ surjektiv bedeutet:

      Für alle [mm] $C\in [/mm] c$ existiert ein [mm] $B\in [/mm] b$ mit $f(B)=C$.

Das ist zu zeigen.

Betrachte also ein beliebig vorgegebenes [mm] $C\in [/mm] c$.
Zu zeigen ist die Existenz eines [mm] $B\in [/mm] b$ mit $f(B)=C$.

Da [mm] $f\circ [/mm] g$ surjektiv ist, existiert zu unserem [mm] $C\in [/mm] c$ ein [mm] $A\in [/mm] a$ mit ...

Jetzt betrachte $B:=g(A)$.


Viele Grüße
Tobias


P.S.: Vielleicht hilft dir meine MBBeweis-Anleitung weiter. Dort befindet sich auch ein Beispiel zur Surjektivität.

Bezug
                
Bezug
Beweis Injektiv/Surjektiv: Korrektur und DANKE
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 So 18.11.2012
Autor: harlequix

ups ja es sollte ein f:b sein
und es soll bewiesen oder wiederlegt werden, sorry für die Ungenauigkeiten.

Dein Beweis in der Sammlung hat mir sehr weiter geholfen, vor allem weil der mal ein bisschen ausführlicher wahr als das was die Profs anschreiben.
Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de