www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Beweis Körper
Beweis Körper < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Körper: Ansatz
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 19.11.2011
Autor: Julia191919

Aufgabe
Es seien (k,+,*) ein Körper und a,b element K. Nun soll ich folgendes beweisen:

Für alle n element [mm] \IN [/mm] : [mm] a^{n} [/mm] - [mm] b^{n} [/mm] = (a-b) [mm] \summe_{k=0}^{n-1} a^{k} b^{n-1-k} [/mm]

Ich weiß, dass ich mit der rechten Seite beginnen muss. Und es mit Induktion funktioniert. Nur leider kann ich das nicht umsetzen. Bitte kann mir jemand dabei helfen bzw mit einen Ansatz geben, damit ich mal sehen kann, wie das ganze überhaupt funktioniert. Denn ich komme bei dieser AUfgabe überhaupt nicht weiter.

Danke für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Sa 19.11.2011
Autor: wieschoo


> Es seien (k,+,*) ein Körper und a,b element K. Nun soll
> ich folgendes beweisen:
>
> Für alle n element [mm]\IN[/mm] : [mm]a^{n}[/mm] - [mm]b^{n}[/mm] = (a-b)
> [mm]\summe_{k=0}^{n-1} a^{k} b^{n-1-k}[/mm]
>  Ich weiß, dass ich
> mit der rechten Seite beginnen muss. Und es mit Induktion
> funktioniert. Nur leider kann ich das nicht umsetzen. Bitte
> kann mir jemand dabei helfen bzw mit einen Ansatz geben,
> damit ich mal sehen kann, wie das ganze überhaupt
> funktioniert. Denn ich komme bei dieser AUfgabe überhaupt
> nicht weiter.

ohne Induktion:
Es würde auch ohne Induktion gehen, falls du die Identität
                 [mm]x^{n-1} + x^{n-2} + \ldots + x + 1 = \frac{x^n -1}{x-1}[/mm]
verwenden darfst.

mit Induktion:

Induktion über n:

Den Induktionsanfang führst du über [mm]n=1\;[/mm], also
                       [mm](a-b)\sum_{k=0}^{1}{a^kb^{n-k}}=\ldots = a^2-b^2[/mm]
Induktionsschritt [mm]n\to n+1[/mm]

Sei also die Behauptung für [mm]n[/mm] wahr und es gelte
                                                [mm]a^{n}-b^{n}=(a-b)\sum_{k=0}^{n-1}{a^kb^{n-1-k}}[/mm]
z.z.:

                        [mm]a^{n+1}-b^{n+1}=(a-b)\sum_{k=0}^{n}{a^kb^{n-k}}[/mm]
dazu zerlege die Summe auf der rechten Seite (letzten Summanden herausziehen)
mit einer kleinen Umformung solltest du dann die Summe auf die Gestalt

                                  [mm]\sum_{k=0}^{n-1}{a^kb^{n-1-k}}[/mm]
wieder bringen und die Induktionsvoraussetzung anwenden. Das klappt schon.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de