www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis Linearer Abhängigkeit
Beweis Linearer Abhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Linearer Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 04.12.2005
Autor: onk1

Hallo allerseits!!!
Folgende Aufgabe stammt für mich einmal wieder aus der Kaste "Aufgaben, die die Welt leider noch braucht". (zumindest die mathematiker welt :-/ )

Sei V ein K-Vektorraum, und seien [mm] v_{1},...,v_{n} [/mm] in V gegeben, so dass das Tupel [mm] (v_{1},...,n_{n}) [/mm] linear unabhängig ist. Seien [mm] \lambda_{1},...,\lambda_{n} \el [/mm] K, und sei v :=  [mm] \summe_{j=1}^{n} \lambda_{j} v_{j}. [/mm] Beweisen Sie:
das Tupel [mm] (v_{1} [/mm] - v , ... , [mm] v_{n} [/mm] - v) ist genau dann linear abhängig, wenn [mm] \summe_{j=1}^{n} \lambda_{j} [/mm] = 1 gilt.

wäre wahrlich großartig, wenn mir mal jemand auf die sprünge helfen könnte :-/


anderweitig hab ich die frage selbstverständlich nicht veröffentlicht =)

        
Bezug
Beweis Linearer Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 So 04.12.2005
Autor: SEcki


> Hallo allerseits!!!
>  Folgende Aufgabe stammt für mich einmal wieder aus der
> Kaste "Aufgaben, die die Welt leider noch braucht".
> (zumindest die mathematiker welt :-/ )

Hmm, sag mal, wie soll ich denn diese Einleitung verstehen? Dir macht Mathe schon Spaß, oder? (Höhrt sich nämlich eher sehr gegenteilig an)

> Sei V ein K-Vektorraum, und seien [mm]v_{1},...,v_{n}[/mm] in V
> gegeben, so dass das Tupel [mm](v_{1},...,n_{n})[/mm] linear
> unabhängig ist. Seien [mm]\lambda_{1},...,\lambda_{n} \el[/mm] K,
> und sei v :=  [mm]\summe_{j=1}^{n} \lambda_{j} v_{j}.[/mm] Beweisen
> Sie:
>  das Tupel [mm](v_{1}[/mm] - v , ... , [mm]v_{n}[/mm] - v) ist genau dann
> linear abhängig, wenn [mm]\summe_{j=1}^{n} \lambda_{j}[/mm] = 1
> gilt.

Da muss man also zwei Richtungen beweisen, und ich gebe mal Tips (aber sowas kann man wohl auf viele Weisen lösen.):

Erstens: man köntne das mit Induktion über die anzahl der [m]v_i[/m] lösen.

Zweitens: direkt. Von rechts nach links: da bietet sich eine nicht triviale Kombination der [mm](v_{1} - v , ... , v_{n}- v) [/mm] gerade zu an, da solltest du nochmal nachdenken. (Also [m]\mu_i[/m], nicht alle0, mit [m]\sum_i \mu_i(v_{i} - v) = 0[/m])

Links nach rechts: fand ich etwas kniffliger, aber setze mal an: [m]\sum_i \mu_i(v_{i} - v) = 0[/m]. Dann setze doch mal die Definition von v ein und ordne die Summe so um, dass jeweils nur noch [m]v_i[/m] mit Koeffizienten davor stehen bleiben; ich erhalte als Koeffizientzu diesen [m]\mu_i-\lambda_i(\sum_k \mu_k)[/m]. Was folgt denn nun aus der linearen Unabhängigkeit der [m]v_i[/m]? Stelle das um und summiere auf.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de