www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Beweis Mittelwertsatz
Beweis Mittelwertsatz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 13.03.2014
Autor: geigenzaehler

Aufgabe
Beweise den Mittelwertsatz der Differentialrechnung.

Als Grundlage die Wikipedia-Def.:

"Es sei f: [a,b] [mm] \to \mathbb{R} [/mm] eine Funktion, die auf dem abgeschlossenen Intervall [a,b] (mit a < b) definiert und stetig ist. Außerdem sei die Funktion f im offenen Intervall (a,b) differenzierbar. Unter diesen Voraussetzungen gibt es mindestens ein [mm] x_0 \in [/mm] (a,b), so dass

    [mm] f'\left(x_0\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a} [/mm]

gilt."

Nun ist mir der Satz von Rolle, der den Soderfall f(a)=f(b) behandelt,  einigermaßen klar.

Dieser wird im Beweis zum allg. MWS verwendet:

(Wikipedia):

"Es sei eine Hilfsfunktion h: [a,b] [mm] \to \mathbb{R} [/mm] definiert, mit

    [mm] h(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) [/mm]

h ist stetig in [a,b] und in (a,b) differenzierbar. Es gilt h(b)=f(a)=h(a).

Nach dem Satz von Rolle existiert daher ein [mm] x_0\in [/mm] (a,b) mit [mm] h'\left(x_0\right)=0. [/mm] Da

    [mm] h'(x_0)=f'(x_0)-\frac{f(b)-f(a)}{b-a} [/mm]

folgt die Behauptung."


Wie kommt denn diese Hilfsfunktion zustande und was kann ich mir darunter vorstellen?

Theoretisch könnte man doch "sowas wie eine Koordinatentransformation machen" (-> war noch nicht Teil des Stoffs) und die Achsen so drehen, dass der allgemeine Fall im Spezialfall nach Rolle mündet.

        
Bezug
Beweis Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Do 13.03.2014
Autor: Gonozal_IX

Hiho,

> Theoretisch könnte man doch "sowas wie eine
> Koordinatentransformation machen" (-> war noch nicht Teil
> des Stoffs) und die Achsen so drehen, dass der allgemeine
> Fall im Spezialfall nach Rolle mündet.

ja und da das viel zu kompliziert ist (wer sagt dir, dass die Ableitungsregeln unter Koordinatentransformationen erhalten bleiben?) macht man anschaulich genau das, was du dir vermutlich eigentlich vorstellst.

Man nimmt die Funktion und "klappt" sie so um, dass f(a) und f(b) auf der x-Achse liegen.
Das macht man eben, in dem man die Gerade, die durch f(a) und f(b) geht, abzieht.

Mach dir eine Skizze, dann ist das recht schnell klar.

Man könnte auch sagen, dass man die Gerade, die durch f(a) und f(b) geht, als neue x-Achse definiert, also irgendwas transformiert.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de