www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Beweis O-Notation
Beweis O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Do 27.11.2008
Autor: royalbuds

Aufgabe
Ist [mm] \frac{n^3+n+1}{2n^2-5} [/mm] in [mm] \mathcal{O}(n) [/mm]

Hab folgendes gemacht:

[mm] \frac{n^3+n+1}{2n^2-5} \leq [/mm] c*n

[mm] \frac{\frac{n^3+n+1}{2n^2-5}}{n} \leq [/mm] c

[mm] \frac{n^3+n+1}{2n^3-5n} \leq [/mm] c

Wenn ich nun [mm] \limes_{n\rightarrow\infty} [/mm] mache bekomme ich als Grenzwert [mm] \frac{1}{2}. [/mm]

Reicht das oder muss ich da noch weitermachen? Also [mm] \frac{1}{2} \leq [/mm] c.

Gruss

        
Bezug
Beweis O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 27.11.2008
Autor: Karl_Pech

Hallo royalbuds,


> [mm]\frac{n^3+n+1}{2n^3-5n} \leq[/mm] c


Hier kannst du abschätzen:


[mm]\frac{n^3+n+1}{2n^3-5n} \le \frac{n^3+2n}{2n^3-5n} = \frac{n^2+2}{2n^2-5}=\frac{1+\frac{2}{n^2}}{2-\frac{5}{n^2}}[/mm]


Der Bruch wird größer, wenn der Zähler wächst und der Nenner kleiner wird. Gleichzeitig muß der Bruch > 0 sein. Also muß [mm]2-\tfrac{5}{n^2}>0\Rightarrow n^2 > 2.5[/mm] gelten, was erst für [mm]n\ge 2[/mm] gilt. Da jedes [mm]n>2\![/mm] den Zähler kleiner und den Nenner größer macht, ist [mm]\tfrac{1+\frac{1}{2}}{2-\frac{5}{4}}=2[/mm] die gesuchte Schranke:


[mm]\frac{n^3+n+1}{2n^3-5n}\le 2\quad\forall n\in \mathbb{N}_{\ge 2}.[/mm]



Viele Grüße
Karl




Bezug
        
Bezug
Beweis O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 27.11.2008
Autor: bazzzty


> Ist [mm]\frac{n^3+n+1}{2n^2-5}[/mm] in [mm]\mathcal{O}(n)[/mm]
>  Hab folgendes gemacht:
>  
> [mm]\frac{n^3+n+1}{2n^2-5} \leq[/mm] c*n
>  
> [mm]\frac{\frac{n^3+n+1}{2n^2-5}}{n} \leq[/mm] c
>  
> [mm]\frac{n^3+n+1}{2n^3-5n} \leq[/mm] c
>  
> Wenn ich nun [mm]\limes_{n\rightarrow\infty}[/mm] mache bekomme ich
> als Grenzwert [mm]\frac{1}{2}.[/mm]

Das reicht prinzipiell, aber es bleibt in meinen Augen etwas unsauber: Es gibt nicht explizit ein [mm]c[/mm], und erst recht kein [mm]n_0[/mm].


> Reicht das oder muss ich da noch weitermachen? Also
> [mm]\frac{1}{2} \leq[/mm] c.

Das wiederum stimmt nicht, denn [mm]c=1/2[mm] geht nicht:
Für alle [mm]n[/mm] ist [mm]\frac{n^3+n+1}{2n^2-5}>\frac{1}{2}n[/mm]. Du mußt [mm]c[/mm] schon echt größer wählen.

Wegen der mathematischen Ungenauigkeiten bin ich kein Freund von diesen Grenzwertspielereien. Es geht eigentlich immer einfacher:
[mm]\frac{n^3+n+1}{2n^2-5}\leq\frac{3n^3}{2n^2-5}[/mm] für alle [mm]n[/mm] und [mm]\frac{3n^3}{2n^2-5}\leq \frac{3n^3}{n^2}\leq 3n[/mm] für [mm]n\geq 5[/mm].

Und fertig ist es.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de