www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Beweis Potenzregel
Beweis Potenzregel < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Potenzregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Mo 16.01.2006
Autor: ANTONIO

Aufgabe
Beweis [mm] a^m*a^n=a^{m+n} [/mm] für n,m Element N

Hallo,
in meinem Brückenkurs Fernuni wird die Regel nicht bewiesen sondern nur [mm] a^m [/mm] definiert [mm] :=$a\cdot ....\cdot [/mm] a$ (m-mal) Kurze Zeit später wird darauf hingewiesen daß "..." für skeptische Naturen eigentlich unbefriedigend sei. Habe ich mit Kanonen auf Spatzen geschossen, wenn ich das ganze mit vollständiger Induktion beweise? Alternativ fiel mir nur folgendes ein, das ich irgendwie doch etwas dünn weil über die Anschauung gehend finde (bin ich hier zu kritisch ?):
[mm] $a^m:= a\cdot ....\cdot [/mm] a (m-mal)$
[mm] $a^n:= a\cdot ....\cdot [/mm] a (n-mal)$
=>$ [mm] a^m \cdot a^n =a\cdot ....\cdot [/mm] a [mm] (m-mal)\cdot a\cdot ....\cdot [/mm] a $(n-mal)
[mm] $a^{m+n}:= a\cdot ....\cdot [/mm] a (m+n-mal)$
=> [mm] $a^{m+n}=a^m \cdot a^n [/mm] $
Grüße
Frank
PS:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
PPS: Das hatte ich übrigens schon bei meinem ersten Posting vor ein paar Tagen zugesichert. Ich finde die Formulierung "bei eine deiner ersten Fragen" überraschend, gibt es mehr als eine 1. Frage? Was wäre eine Formulierungsalternative? möglicherweise eine Konkretisierung: bei deinen ersten vier Fragen. War das hier schon häufig ein Diskusssionspunkt?;-)

        
Bezug
Beweis Potenzregel: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 01:24 Di 17.01.2006
Autor: leduart

Hallo Antonio
> Beweis [mm]a^m*a^n=a^{m+n}[/mm] für n,m Element N
>  Hallo,
>  in meinem Brückenkurs Fernuni wird die Regel nicht
> bewiesen sondern nur [mm]a^m[/mm] definiert :=[mm]a\cdot ....\cdot a[/mm]
> (m-mal) Kurze Zeit später wird darauf hingewiesen daß "..."
> für skeptische Naturen eigentlich unbefriedigend sei. Habe
> ich mit Kanonen auf Spatzen geschossen, wenn ich das ganze
> mit vollständiger Induktion beweise? Alternativ fiel mir
> nur folgendes ein, das ich irgendwie doch etwas dünn weil
> über die Anschauung gehend finde (bin ich hier zu kritisch

Nein , vollst. Ind. ist der einzige wirklich auf Uniebene anerkannte Weg!
ausgehen darfst du dabei von der Daefinition [mm] a^{1}=a [/mm] und [mm] a^{m+1}=a*a^{m}. [/mm] Wenn du Gestze wie das Assotiativitätsgesetz verwendest, musst du das auch sagen, im übrigen ist die Induktion nicht schwer.
Pünktchen sind ne Art veranschaulichung, also für die Schule evt. geeignet, aber KEIN Beweis.

>  [mm]a^m:= a\cdot ....\cdot a (m-mal)[/mm]
>  [mm]a^n:= a\cdot ....\cdot a (n-mal)[/mm]
>  
> =>[mm] a^m \cdot a^n =a\cdot ....\cdot a (m-mal)\cdot a\cdot ....\cdot a [/mm](n-mal)
>  
> [mm]a^{m+n}:= a\cdot ....\cdot a (m+n-mal)[/mm]
>  => [mm]a^{m+n}=a^m \cdot a^n[/mm]

>  
> Grüße
>  Frank
>  PS:Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  PPS: Das hatte ich übrigens schon bei meinem ersten
> Posting vor ein paar Tagen zugesichert. Ich finde die
> Formulierung "bei eine deiner ersten Fragen" überraschend,
> gibt es mehr als eine 1. Frage? Was wäre eine
> Formulierungsalternative? möglicherweise eine
> Konkretisierung: bei deinen ersten vier Fragen. War das
> hier schon häufig ein Diskusssionspunkt?;-)

Hie und da schon mal.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de