Beweis Put-Call-Parität < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:03 Sa 25.05.2013 | Autor: | Haven83 |
Hallo,
muss folgende Aufgabe fuer in einer Hausarbeit fuer mein Master-Studium (Finance) loesen. Ich soll beweisen das Put- und Call-Optionen deren Preis nach dem mehrstufigen Binomialmodell berechnet wurde die Put-Call-Paritaet erfuellen.
Die Put-Call-Paritaet (unter der Annahme von dass Dividenden nicht vorhanden sind) ist:
[mm] P=C-x+k*e^{-rt}
[/mm]
mit
- P = Preis der Put-Option
- C = Preis der Call-Option
- x = Preis des zugrundeliegenden Basiswertes (bspw. Aktie)
- [mm] k*e^{-rt} [/mm] = Barwert vom Ausuebungspreis der Optionen
Der Preis eines Derivates (Option) mit der Auszahlungsfunktion F(x) nach dem mehrstufigen Binomialmodell ist gegeben durch
[mm] V_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j} F(u^jd^{n-j}x)
[/mm]
Daraus ergibst sich fuer den Put:
[mm] P_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(k-u^jd^{n-j}x)^{+}
[/mm]
Und fuer den Call:
[mm] C_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(u^jd^{n-j}x-k)^{+}
[/mm]
Hilfestellungen sind:
1. [mm] e^{-rt}=\rho^{-n}
[/mm]
2. [mm] (a+b)^n=\Sigma_{j=0}^n{n \choose j}a^j b^{n-j}
[/mm]
3. p+q=1
4. [mm] Y=Y^{+}-(-Y)^{+}
[/mm]
Ich muss jetzt beweisen dass
[mm] P_0=C_0-x+k*e^{-rt}=\rho^{-n}[\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(u^jd^{n-j}x-k)^{+}]-x+k*e^{-rt}
[/mm]
Gleich
[mm] \rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(k-u^jd^{n-j}x)^{+}
[/mm]
ist
Momentan bin ich mit Hilfe der Hilfestellungen bei folgendem Schritt angelangt
[mm] P_0=\rho^{-n}[\Sigma_{j=0}^n(k-u^jd^{n-j}x)^{+}]+\rho^{-n}[\Sigma_{j=0}^n(u^jd^{n-j}x-k)]-x+k*\rho^{-n}
[/mm]
Der erste Teil [mm] \rho^{-n}[\Sigma_{j=0}^n(k-u^jd^{n-j}x)^{+}] [/mm] entspricht quasi meinem gesuchten Term. Die Frage ist nur wie ich den letzten Teil aufloesen kann. Der muss sich ja irgendwie auf Null summieren. Aber wie? Oder habe ich zwischendruch etwas falsch gemacht? (Bei Bedarf kann ich noch die Zwischenschritte nachreichen).
Vielen Dank fuer jegliche Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:00 So 26.05.2013 | Autor: | Staffan |
Hallo,
> Hallo,
>
> muss folgende Aufgabe fuer in einer Hausarbeit fuer mein
> Master-Studium (Finance) loesen. Ich soll beweisen das Put-
> und Call-Optionen deren Preis nach dem mehrstufigen
> Binomialmodell berechnet wurde die Put-Call-Paritaet
> erfuellen.
>
> Die Put-Call-Paritaet (unter der Annahme von dass
> Dividenden nicht vorhanden sind) ist:
>
> [mm]P=C-x+k*e^{-rt}[/mm]
>
> mit
> - P = Preis der Put-Option
> - C = Preis der Call-Option
> - x = Preis des zugrundeliegenden Basiswertes (bspw.
> Aktie)
> - [mm]k*e^{-rt}[/mm] = Barwert vom Ausuebungspreis der Optionen
>
> Der Preis eines Derivates (Option) mit der
> Auszahlungsfunktion F(x) nach dem mehrstufigen
> Binomialmodell ist gegeben durch
>
> [mm]V_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j} F(u^jd^{n-j}x)[/mm]
>
> Daraus ergibst sich fuer den Put:
> [mm]P_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(k-u^jd^{n-j}x)^{+}[/mm]
>
> Und fuer den Call:
> [mm]C_0=\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(u^jd^{n-j}x-k)^{+}[/mm]
>
> Hilfestellungen sind:
> 1. [mm]e^{-rt}=\rho^{-n}[/mm]
> 2. [mm](a+b)^n=\Sigma_{j=0}^n{n \choose j}a^j b^{n-j}[/mm]
> 3.
> p+q=1
> 4. [mm]Y=Y^{+}-(-Y)^{+}[/mm]
>
> Ich muss jetzt beweisen dass
> [mm]P_0=C_0-x+k*e^{-rt}=\rho^{-n}[\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(u^jd^{n-j}x-k)^{+}]-x+k*e^{-rt}[/mm]
>
> Gleich
> [mm]\rho^{-n}\Sigma_{j=0}^n{n \choose j}p^j q^{n-j}(k-u^jd^{n-j}x)^{+}[/mm]
>
> ist
>
> Momentan bin ich mit Hilfe der Hilfestellungen bei
> folgendem Schritt angelangt
>
> [mm]P_0=\rho^{-n}[\Sigma_{j=0}^n(k-u^jd^{n-j}x)^{+}]+\rho^{-n}[\Sigma_{j=0}^n(u^jd^{n-j}x-k)]-x+k*\rho^{-n}[/mm]
>
Das erscheint mir nicht richtig, weil vereinfacht geschrieben jetzt dort steht:
$ P=P+ [mm] C-x+k\cdot{}e^{-rt} [/mm] $
Das stimmt nicht mit der Call-Put-Parität, wie Du sie am Anfang beschreibst, überein.
Ich würde zuerst in dieser Anfangsformel sowohl P auf der linken Seite als auch C auf der rechten Seite mit den Binomialausdrücken ersetzen.
>
> Der erste Teil [mm]\rho^{-n}[\Sigma_{j=0}^n(k-u^jd^{n-j}x)^{+}][/mm]
> entspricht quasi meinem gesuchten Term. Die Frage ist nur
> wie ich den letzten Teil aufloesen kann. Der muss sich ja
> irgendwie auf Null summieren. Aber wie? Oder habe ich
> zwischendruch etwas falsch gemacht? (Bei Bedarf kann ich
> noch die Zwischenschritte nachreichen).
>
> Vielen Dank fuer jegliche Hilfe.
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Ich komme zu einer Lösung mit folgenden Kriterien:
- Anstelle von [mm] \rho^{-n} [/mm] setze ich immer [mm] e^{-rt} [/mm] aus der Hilfestellung 1 ein.
- Von der Hilfestellung 2 $ [mm] (a+b)^n=\Sigma_{j=0}^n{n \choose j}a^j b^{n-j} [/mm] $ her kann man den ersten Teil der Summe in [mm] C_0 [/mm] und [mm] P_0 [/mm] ersetzen durch
$ [mm] (p+q)^n=\Sigma_{j=0}^n{n \choose j}p^j q^{n-j} [/mm] $ und da nach Hilfestellung 3 p+q=1 ist, ergibt dieser Teil 1.
- anschließend bringe den Ausdruck für [mm] C_0 [/mm] auf die linke Seite der Gleichung. Nach Ausklammern sollte in der Klammer stehen
$ [mm] \Sigma_{j=0}^n(k-u^jd^{n-j}x)^{+} [/mm] - [mm] \Sigma_{j=0}^n(u^jd^{n-j}x-k)^{+} [/mm] $. Das entspricht dem Y gemäß Hilfestellung 4.
- Ich komme dann zu einem Ergebnis, wenn ich gemäß der kontinuierlichen Form des Binomialmodells ansetze $ u [mm] \cdot [/mm] d = 1 $, auf den Zeitpunkt t=0 (Fälligkeit) abstelle und damit j=n ist. Man muß nur beweisen, daß die Parität gegeben ist; eine Auflösung nach [mm] P_0 [/mm] ist dabei gar nicht notwendig.
Gruß
Staffan
|
|
|
|