www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Beweis Quantile
Beweis Quantile < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Quantile: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:42 So 13.11.2011
Autor: MattiJo

Aufgabe
(a) Seien v, w : R → R zwei nichtfallende und rechtsseitig stetige Funktionen. Für jede Zufallsvariable X : Ω → R gilt dann für fast jedes y ∈ [0,1]

[mm] F^{-1}_{v(X)}(y) [/mm] = [mm] v(F^{-1}_{X}(y)) [/mm] und [mm] F^{-1}_{v(X)+w(X)}(y) [/mm] = [mm] F^{-1}_{v(X)}(y) [/mm] + [mm] F^{-1}_{w(X)}(y) [/mm]

Hinweis: Benutzen Sie, dass y [mm] \le [/mm] F(x) genau dann, wenn [mm] F^{-1}(y) \le [/mm] x.


(b) Sei X integrierbar, d.h. E|X| < [mm] \infty. [/mm] Dann gilt

EX = [mm] \integral_{0}^{1}{F^{-1}_{X}(y) dy} [/mm]

Hinweis: Benutzen Sie dazu die Zerlegung [mm] X=X^{+} [/mm] - [mm] X^{-} [/mm] und wenden Sie Teilaufgabe (a) an. Hilfreich dabei ist, dass EX = [mm] \integral_{0}^{\infty}{1 - F_{X}(x) dx} [/mm] - [mm] \integral_{-\infty}^{0}{F_{X}(x) dx} [/mm] gilt, falls E|X| < [mm] \infty [/mm]  sowie die Beobachtung, dass [mm] \integral_{0}^{1}{F_{X}^{-1}(y) dy} [/mm] = [mm] \integral_{0}^{1}{\integral_{0}^{\infty}{indikator_{(0,F_{X}^{-1}(y))}(x) dx dy}}. [/mm]


Hallo zusammen,
leider habe ich lange keine Mathevorlesung mehr gehört, bin jetzt aber mit Beginn meines Masterstudiums in Elektrotechnik wieder in eine Stochastikvorlesung eingestiegen. Deshalb bin ich nicht mehr so vertraut mit dem Jargon (und insbesondere mit korrekt ausgeführten Beweisen) und hoffe, ihr könnt mir dabei helfen, obige Aufgabe zu lösen.
Die genaue Bedeutung eines Quantils hab ich noch nicht verstanden, erkenne aber bei (a) einen linearen Zusammenhang. Weiterhin weiß ich, dass die verallgemeinerte Inverse (laut meines Skripts) definiert ist durch [mm] F_{X}^{-1} [/mm] = inf{x : [mm] F_{X}(x) \ge [/mm] y}, [mm] y\in[0,1]. [/mm]
Wie kann ich den Beweis durchführen?

        
Bezug
Beweis Quantile: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Mo 14.11.2011
Autor: Blech

Hi,

> $ [mm] F^{-1}_{v(X)}(y) [/mm] $ = $ [mm] v(F^{-1}_{X}(y)) [/mm] $

es is verdammt spät, aber ich seh nicht, wie das gelten soll.

Bsp:

$ [mm] P(X\leq [/mm] x) = [mm] \frac [/mm] 23 x * [mm] 1_{0

[mm] $v(x)=1_{x\geq 1}$ [/mm]


[mm] $F^{-1}_{v(X)}(\frac [/mm] 23) = 0$  (denn [mm] $P(v(X)=0)=\frac [/mm] 23$)

[mm] $v(F^{-1}_{X}(\frac [/mm] 23)) =1$ (denn [mm] $F^{-1}_{X}(\frac [/mm] 23)=1$)


n8
Stefan

Bezug
                
Bezug
Beweis Quantile: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Mo 14.11.2011
Autor: MattiJo

eventuell daher die angabe "für fast jedes y" ? Erscheint mir etwas schwammig, die Aufgabenstellung...

Bezug
                        
Bezug
Beweis Quantile: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mo 14.11.2011
Autor: Blech

Hmm, stimmt, hatte ich überlesen.


Eine rechtsseitig stetige Funktion hat höchstens abzählbar viele Unstetigkeitsstellen.

An Stetigkeitsstellen gilt

[mm] $v(X)\leq [/mm] x\ [mm] \Leftrightarrow\ X\leq v^{\leftarrow}(x)$ [/mm]
(das ist von den Ungleichungen her genau die umgekehrte Richtung zu Deinem Hinweis)

wobei [mm] $v^{\leftarrow}(x) :=\inf\{z;\ v(z)>x\}$ [/mm]
(man beachte die abweichende Definition zur Quantilsfunktion)


Jetzt fängst Du mit
[mm] $v(F^{-1}_X(y))\leq [/mm] x\ [mm] \Leftrightarrow\ \ldots$ [/mm]

an, und wendest so lange die Äquivalenzen für [mm] $F^{-1}$ [/mm] und [mm] $v^\leftarrow$ an bis $\Leftrightarrow\ F^{-1}_{v(X)}(y) \leq x$ rauskommt. > $ F^{-1}_{v(X)+w(X)}(y) = F^{-1}_{v(X)}(y) + F^{-1}_{w(X)}(y) $ v(x)+w(x)=(v+w)(x) v+w ist eine monoton steigende, rechtsseitig stetige Funktion. Jetzt wendest Du das erste Ergebnis an. ciao Stefan [/mm]

Bezug
        
Bezug
Beweis Quantile: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 15.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de