www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Beweis Rang Matrixprodukt
Beweis Rang Matrixprodukt < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Rang Matrixprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 18.01.2012
Autor: s1mn

Aufgabe
Es sei A [mm] \in K^{n,n}, \lambda \in [/mm] K, B [mm] \in K^{m,n} [/mm] und C [mm] \in K^{n,m}. [/mm] Man beweise folgende Aussagen.
(a) Es gilt det( [mm] \lambda [/mm] A) = [mm] \lambda^{n} [/mm] det A. (erledigt).
(b) Es sei A invertierbar. Dann gilt rg AC = rg C.



Hey Leute,

kurze Frage ob mein Ansatz zu Aufgabe (b) passt.

Also A ist invertierbar, d.h. A hat vollen Rang, also rg A = n.
C ist nicht quadratisch, hat aber auch n Zeilen, d.h. rg C [mm] \le [/mm] n.
Durch einen Satz aus der Vorlesung ist gegeben:

Der Rang eines Matrixprodukts ist höchstens kleiner als der Rang der jeweiligen Faktoren.

Im Internet hab ich gefunden, dass rg AB = min { rg A, rg B } ist.

da rg A quasi das Maximum darstellt und rg C nur [mm] \le [/mm] n sein kann, hängt der Rang rg AC nur von rg C ab.

Mein (Test) Aufschrieb sieht momentan so aus:

zz: rg AC = rg C

Beweis: A invertierbar [mm] \rightarrow [/mm] rg A = n
C [mm] \in K^{n,m} \rightarrow [/mm] rg C [mm] \le [/mm] n

rg A ist das Maximum der beiden Ränge, somit hängt rg AC nur von rg C ab( laut Satz 2.3 ).
[mm] \rightarrow [/mm] rg AC = rg C.
das könnte man ja noch ersetzen durch:
[mm] \rightarrow [/mm] rg AC [mm] \le [/mm] n
[mm] \Box [/mm]

Ist das so in Ordnung ?
Sieht iwie sehr unmathematisch aus^^

        
Bezug
Beweis Rang Matrixprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mi 18.01.2012
Autor: wieschoo


> Es sei A [mm]\in K^{n,n}, \lambda \in[/mm] K, B [mm]\in K^{m,n}[/mm] und C
> [mm]\in K^{n,m}.[/mm] Man beweise folgende Aussagen.
>  (a) Es gilt det( [mm]\lambda[/mm] A) = [mm]\lambda^{n}[/mm] det A.
> (erledigt).
>  (b) Es sei A invertierbar. Dann gilt rg AC = rg C.
>  
>
> Hey Leute,
>  
> kurze Frage ob mein Ansatz zu Aufgabe (b) passt.
>  
> Also A ist invertierbar, d.h. A hat vollen Rang, also rg A
> = n.
>  C ist nicht quadratisch, hat aber auch n Zeilen, d.h. rg C
> [mm]\le[/mm] n.
>  Durch einen Satz aus der Vorlesung ist gegeben:
>  
> Der Rang eines Matrixprodukts ist höchstens kleiner als
> der Rang der jeweiligen Faktoren.
>  
> Im Internet hab ich gefunden, dass rg AB = min { rg A, rg B
> } ist.

Nein es gilt [mm]rg(AB)\leq \min\{rg(A),rg(b)\}[/mm]

>  
> da rg A quasi das Maximum darstellt und rg C nur [mm]\le[/mm] n sein
> kann, hängt der Rang rg AC nur von rg C ab.
>  
> Mein (Test) Aufschrieb sieht momentan so aus:
>  
> zz: rg AC = rg C
>  
> Beweis: A invertierbar [mm]\rightarrow[/mm] rg A = n
>  C [mm]\in K^{n,m} \rightarrow[/mm] rg C [mm]\le[/mm] n

Stimmt schon, braucht man aber nicht wirklich

>  

.......

> Ist das so in Ordnung ?
>  Sieht iwie sehr unmathematisch aus^^

Betrachte "C" und "AC" als lineare Funktionen.
Zeige [mm] $y\in Bild(C)\gdw y\in [/mm] Bild(AC)$ durch zwei Implikationen (verwendet Definition vom Bild). Das ist sogar hier eine stärkere Aussage




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de