www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Beweis Satz von Lebesgue
Beweis Satz von Lebesgue < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Satz von Lebesgue: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Di 01.02.2011
Autor: freimann

Hallo,

Ich schau mir in dem Analysis III Buch von Amann/Escher gerade den Beweis vom Satz von Lebesgue an (Theorem 3.12 im Buch).

Da verstehe ich einen Schritt nicht. Ich hab den Satz mit Beweis als Bild hochgeladen, hoffe das ist erlaubt:

http://i54.tinypic.com/20gjivo.jpg

Mein Problem hab ich rot unterstrichen.
Es wurde gezeigt: [mm] (f_{j}) [/mm] ist eine Cauchyfolge in L1. L1 ist vollständig, d.h. [mm] (f_{j}) [/mm] konvergiert in L1. Kann ich aus der punktweisen Konvergenz [mm] f_{j} \to [/mm] f folgern, dass der L1 Grenzwert der [mm] (f_{j}) [/mm] f ist? Das leuchtet mir irgendwie nicht ein.

Liebe Grüße,
freimann



        
Bezug
Beweis Satz von Lebesgue: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 01.02.2011
Autor: pelzig

Die [mm]f_j[/mm] bilden eine [mm]\mathcal{L}^1[/mm] Cauchy-Folge, wegen der Vollständigkeit gibt es also ein [mm]\tilde{f}\in\mathcal{L}^1[/mm] mit [mm]f_j\to\tilde{f}[/mm] im [mm]\mathcal{L}^1[/mm]-Sinne. Nach Theorem 2.18 heißt das aber, das eine Teilfolge [mm](f_{j_k})_{k\in\IN}[/mm] fast überall punktweise gegen [mm]\tilde{f}[/mm] konvergiert. Diese Teilfolge konvergiert aber nach Vorraussetzung auch fast überall gegen [mm]f[/mm]. Also (!) gilt [mm]\tilde{f}=f[/mm] fast überall, insbesondere ist auch [mm]f\in\mathcal{L}^1[/mm] (das wussten wir a priori nicht) und es gilt

[mm]\int_Xf_j\ d\mu\to\int_X\tilde{f}\ d\mu=\int_Xf\ d\mu[/mm] für [mm]j\to\infty[/mm].

Viele Grüße,
Robert

Bezug
                
Bezug
Beweis Satz von Lebesgue: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Mi 02.02.2011
Autor: freimann

Hallo pelzig,

Danke für deine Antwort, hat mir sehr geholfen. Es ist garnicht schwer gewesen. :-)

Liebe Grüße,
freimann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de