Beweis: Sin+Sinh durch Reihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [Dateianhang nicht öffentlich] |
hi,
gleich ma zu anfang: ich bin kein mathematiker und beweise sind nich grad meine lieblingsaufgaben. kann euch deshalb kaum eigene ansätze liefern. und mit reihen kann ich auch nich viel anfangen. das einzige, was mir einfällt, is den sin eben durch [mm] \bruch{e^{iz}-e^{-iz}}{2i} [/mm] darzustellen. aber wie geht man weiter vor? bin über jede hilfe dankbar.
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Hallo Reicheinstein,
> [Dateianhang nicht öffentlich]
> hi,
>
> gleich ma zu anfang: ich bin kein mathematiker und beweise
> sind nich grad meine lieblingsaufgaben. kann euch deshalb
> kaum eigene ansätze liefern. und mit reihen kann ich auch
> nich viel anfangen. das einzige, was mir einfällt, is den
> sin eben durch [mm]\bruch{e^{iz}-e^{-iz}}{2i}[/mm] darzustellen.
> aber wie geht man weiter vor? bin über jede hilfe dankbar.
Das ist doch schon mal ein guter Ansatz.
Verwende nun die Exponentialreihe mit den Argumenten iz bzw. -iz.
Gruß
MathePower
|
|
|
|
|
hi, danke für deine schnelle antwort. ich hab jetzt also die exp'reihe: [mm] E(x):=\summe_{n=0}^{\infty}\bruch{x^{n}}{n!}. [/mm] wenn ich [mm] arg=\pm [/mm] iz setze [mm] \Rightarrow E(\pm iz):=\summe_{n=0}^{\infty}\bruch{(\pm iz)^{n}}{n!} [/mm]
so, also man sieht ja irgendwie, dass die [mm] (-1)^{n} [/mm] bei der sinus-identität mit dem [mm] (\pm i)^{n} [/mm] zu tun hat, richtig? aber einfach zahlen einsetzen reicht ja sicher nich fürn beweis.
und dann is da noch das ding mit 2n+1 statt einfach nur n, wie bei der exp'reihe. also nur ungerade exponenten bzw fakultäten. aber wie kommt man denn darauf? wie beweist man sowas? ich weiß wirklich nich, wie ich das anstellen soll. hat das evtl. was mit ableitungen zu tun? so wie taylor? das is doch ne taylor-reihe, oda? hilft mir das irgendwie weiter? wenn ja, wie? hoffe mir kann jemand weiterhelfen...
sg
|
|
|
|
|
Hallo Reicheinstein,
> hi, danke für deine schnelle antwort. ich hab jetzt also
> die exp'reihe:
> [mm]E(x):=\summe_{n=0}^{\infty}\bruch{x^{n}}{n!}.[/mm] wenn ich
> [mm]arg=\pm[/mm] iz setze [mm]\Rightarrow E(\pm iz):=\summe_{n=0}^{\infty}\bruch{(\pm iz)^{n}}{n!}[/mm]
>
> so, also man sieht ja irgendwie, dass die [mm](-1)^{n}[/mm] bei der
> sinus-identität mit dem [mm](\pm i)^{n}[/mm] zu tun hat, richtig?
> aber einfach zahlen einsetzen reicht ja sicher nich fürn
> beweis.
>
> und dann is da noch das ding mit 2n+1 statt einfach nur n,
> wie bei der exp'reihe. also nur ungerade exponenten bzw
> fakultäten. aber wie kommt man denn darauf? wie beweist man
> sowas? ich weiß wirklich nich, wie ich das anstellen soll.
> hat das evtl. was mit ableitungen zu tun? so wie taylor?
> das is doch ne taylor-reihe, oda? hilft mir das irgendwie
> weiter? wenn ja, wie? hoffe mir kann jemand
> weiterhelfen...
Wenn Du die beiden Reihen von einander subtrahierst,
dann stellst Du fest, daß es einen Faktor [mm]i^{n}-\left(-i\right)^{n}[/mm] gibt.
[mm]i^{n}-\left(-i\right)^{n}=i^{n}*\left(1+\left(-1\right)^{n}\right)[/mm]
Überlege Dir nun, für welche n [mm]1+\left(-1\right)^{n}=0[/mm] gilt.
>
> sg
Gruß
MathePower
|
|
|
|
|
also der ausdruck wird 0 für ungerade n. würde sich denn der ausdruck ändern, wenn ich für i iz schreibe?
kann ich denn dann einfach schreiben:
[mm] E(iz)-E(-iz)=\summe_{n=0}^{\infty}\bruch{(iz)^{n}-(-iz)^{n}}{n!} [/mm] und der wird eben für ungerade n 0? (und für z=0) also wir gewinnen, dass wir wissen, dass unsere gesuchte funktion für ungerade n-te argumente 0 wird? oda wie gehts weiter?
sg und danke!
|
|
|
|
|
Hallo Reicheinstein,
> also der ausdruck wird 0 für ungerade n. würde sich denn
> der ausdruck ändern, wenn ich für i iz schreibe?
Leider habe ich mich da verschrieben:
[mm]i^{n}\left(1-\left(-1\right)^{n}\right)[/mm]
Dieser Ausdruck verschwindet, wenn n gerade ist.
>
> kann ich denn dann einfach schreiben:
>
> [mm]E(iz)-E(-iz)=\summe_{n=0}^{\infty}\bruch{(iz)^{n}-(-iz)^{n}}{n!}[/mm]
> und der wird eben für ungerade n 0? (und für z=0) also wir
> gewinnen, dass wir wissen, dass unsere gesuchte funktion
> für ungerade n-te argumente 0 wird? oda wie gehts weiter?
Ich hab ja schon oben erwaähnt, daß ich mich da verschrieben habe.
Demnach lautet jetzt die Reihe erstmal
[mm]E(iz)-E(-iz)=\summe_{n=0}^{\infty}\bruch{(iz)^{2n+1}-(-iz)^{2n+1}}{\left(2n+1\right)!}[/mm]
[mm]=\summe_{n=0}^{\infty}i^{2n+1}\bruch{(z)^{2n+1}-(-z)^{2n+1}}{\left(2n+1\right)!}[/mm]
[mm]=\summe_{n=0}^{\infty}i^{2n+1}z^{2n+1}\bruch{1-(-1)^{2n+1}}{\left(2n+1\right)!}[/mm]
Nun kannst Du schreiben:
[mm]i^{2n+1}=i*i^{2n}=i*\left(i^{2}\right)^{n}=i*\left(-1\right)^{n}[/mm]
>
> sg und danke!
Gruß
MathePower
|
|
|
|
|
ahh, ok, danke, verstehe (hoffentlich). damit der ausdruck nich 0 wird, muss ich also mein n in der exp'reihe durch ein 2n+1 ersetzen. dann n bissl ausklammern und dann bleibt erstma [mm] \summe_{n=0}^{\infty}i(-1)^{n}z^{2n+1}\bruch{1-(-1)^{2n+1}}{(2n+1)!} [/mm] d.h also, dass jetzt [mm] i*(1-(-1)^{2n+1})=1 [/mm] seien muss. seh ich das richtig?
sg
|
|
|
|
|
Hallo Reicheinstein,
> ahh, ok, danke, verstehe (hoffentlich). damit der ausdruck
> nich 0 wird, muss ich also mein n in der exp'reihe durch
> ein 2n+1 ersetzen. dann n bissl ausklammern und dann bleibt
> erstma
> [mm]\summe_{n=0}^{\infty}i(-1)^{n}z^{2n+1}\bruch{1-(-1)^{2n+1}}{(2n+1)!}[/mm]
> d.h also, dass jetzt [mm]i*(1-(-1)^{2n+1})=1[/mm] seien muss. seh
> ich das richtig?
Nein.
Die Reihe kannst Du fast so stehen lassen, wie oben:
[mm]\summe_{n=0}^{\infty}i(-1)^{n}z^{2n+1}\bruch{1-(-1)^{2n+1}}{(2n+1)!}=\summe_{n=0}^{\infty}2*i(-1)^{n}z^{2n+1}\bruch{1}{(2n+1)!}[/mm]
Jetzt muß Du nur noch durch 2i teilen,
und dann steht die Reihe für [mm]\sin\left(z\right)[/mm] da.
>
> sg
Gruß
MathePower
|
|
|
|
|
ahh, natürlich, sry. schon n bissl spät *g* vielen dank. die sinh schau ich mir morgen an, bzw heute nachmittag. das dürfte hoffentlich nich mehr das große prob sein, aber wie ich mich kenne...
sg
|
|
|
|
|
so, ich hab mir nun mal sinhz angeschaut und hab da folgendes gemacht:
[mm] sinh(z)=-isin(iz)=\summe_{}^{}-i(-1)^{n}\bruch{(iz)^{2n+1}}{(2n+1)!}=\summe_{}^{}-i*i^{2n+1}(-1)^{n}\bruch{z^{2n+1}}{(2n+1)!}=\summe_{}^{}-i*i(-1)^{n}(-1)^{n}\bruch{z^{2n+1}}{(2n+1)!}=\summe_{}^{}-i^{2}(-1)^{2n}\bruch{z^{2n+1}}{(2n+1)!}=\summe_{}^{}\bruch{z^{2n+1}}{(2n+1)!}
[/mm]
ich hoffe ich hab richtig gerechnet, sg
|
|
|
|
|
Das sieht doch gut aus .
|
|
|
|