www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Beweis Summe
Beweis Summe < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mo 25.05.2009
Autor: Heatshawk

Folgendes gilt zu beweisen:
[mm] \summe_{i=0}^{n}i*P(x=i)=n*p [/mm]
[mm] \gdw\summe_{i=0}^{n}i*\vektor{n \\ i}*p^i*(1-p)^{n-i}=n*p [/mm]

Zunächst habe ich mir überlegt, auf beiden Seiten durch p zu dividieren, was dann so aussehen sollte:

[mm] \summe_{i=0}^{n}i*\vektor{n \\ i}*p^{i-1}*(1-p)^{n-i}=n [/mm]

Diese Gleichung würde ich nun mit der vollständigen Induktion beweisen.
Ich weiß nicht, ob dies der beste(oder überhaupt ein richtiger)Weg ist.
Soweit ich weiß, müsste ich nun den Induktionsanfang, n=0, ausprobieren.
Also
[mm] \summe_{i=0}^{0}i*\vektor{n \\ i}*p^{i-1}*(1-p)^{n-i}=n [/mm]
Dies führt zu einer wahren Aussage.
Als nächstes den Induktionsschritt.
Dies würde bedeuten als obere Grenze n und n+1 auszuprobieren.
Doch leider weiß ich nicht wie es hier gehen soll.
Für die obere Grenze n:
[mm] \summe_{i=0}^{n}i*\vektor{n \\ i}*p^{i-1}*(1-p)^{n-i}=n [/mm]
[mm] \gdw 0*\vektor{n \\ 0}*p^{-1}*(1-p)^n+1*\vektor{n \\ 1}*p^{0}*(1-p)^{n-1}+...+n*\vektor{n \\ n}*p^{n-1}*(1-p)^0=n [/mm]

Vielleicht kann mir jemand helfen wie es weiter geht, oder ob es überhaupt so geht.
Danke im Vorraus.

        
Bezug
Beweis Summe: Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 25.05.2009
Autor: Roadrunner

Hallo heatshawk!


Deine Umformung, welche Du durchführst, musst Du auch auf beiden Seiten durchführen (das hast Du nicht getan).

Kannst Du uns noch etwas mehr über die Randbedingungen wie z.B. $P(X=i)_$ verraten?


Gruß vom
Roadrunner


Bezug
                
Bezug
Beweis Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mo 25.05.2009
Autor: Heatshawk

P(X=k)(Index n,p)= [mm] \vektor{n \\ k}p^k(1-p)^{n-k} [/mm]

Wo genau habe ich eine Umformung auf beiden Seiten vergessen?
Sehe es im Moment nicht.

Bezug
                        
Bezug
Beweis Summe: Menno ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Mo 25.05.2009
Autor: Roadrunner

Hallo heatshawk!


[bonk] ... schon der 2. erlegte Bock innehalb einer Stunde. Ich sollte für heute aufhören. [kopfschuettel]


Deine Umformung ist korrekt! [sorry]


Gruß vom
Roadrunner


Bezug
        
Bezug
Beweis Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mo 25.05.2009
Autor: luis52

Moin  Andreas,

Da schau her. Gehen Sputnik und du in dieselbe Klasse?

vg Luis  

Bezug
                
Bezug
Beweis Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Mi 27.05.2009
Autor: Heatshawk

[mm] n*p*\summe_{k=1}^{n}\vektor{n-1 \\ k-1}p^{k-1}(1-p)^{(n-1)-(k-1)} [/mm]

[mm] =n*p*\summe_{l=0}^{n-1}\vektor{n-1 \\ l}p^{l}(1-p)^{(n-1)-l} [/mm]

Läuft der obere Laufindex in diesem Fall bis n-1, da l=k-1 und k bis n lief?

Bezug
                        
Bezug
Beweis Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mi 27.05.2009
Autor: Teufel

Hi!

Ja. Bei Indexverschiebungen sollte man die obere Grenze nie vergessen.
Man kann es ja auch als [mm] $\summe_{k=1}^{k=n}(...)$ [/mm] schreiben, was die Sache auch deutlicher machen würde.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de