www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis Summe 1/k! < 14/5
Beweis Summe 1/k! < 14/5 < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Summe 1/k! < 14/5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 01.05.2012
Autor: helicopter

Aufgabe
Zeige, dass k! > [mm] 2^k [/mm] für k [mm] \ge [/mm] 5 gilt und folgere daraus dass für alle [mm] n\in\IN [/mm] gilt:
[mm] \summe_{k=0}^{n}\bruch{1}{k!} [/mm] < [mm] \bruch{14}{5} [/mm]
Hinweis; Behandle den Fall n [mm] \le [/mm] 4 gesondert.

Hallo,

ich habe gezeigt das k! > [mm] 2^k [/mm] für k [mm] \ge [/mm] 5 gilt,
wenn ich jetzt wie im Hinweis empfohlen wird n=4 in die Summe einsetze bekomme ich [mm] \bruch{325}{120} [/mm] < [mm] \bruch{14}{5}=\bruch{336}{120} [/mm]
Ich glaube es ist auch kein Zufall das der Nenner gerade 5! ist, aber ich komme einfach nicht auf den Zusammenhang mit [mm] 2^k [/mm] und kann dementsprechend nicht folgern.

Danke im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Summe 1/k! < 14/5: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Di 01.05.2012
Autor: leduart

Hallo
du kannst doch die Reihe  ab n=5  durch eine geom Reihe ab n=5 mit q=1/2  abschätzen, und bis 5 die geom und die mit 1/k! einzeln rechnen.
Gruss leduart

Bezug
                
Bezug
Beweis Summe 1/k! < 14/5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Di 01.05.2012
Autor: helicopter

Ich weiß garnicht ob ich sie verwenden dürfte denn wir haben die geometrische Reihe nicht eingeführt.

Wie funktioniert denn so eine Abschätzung?

Bezug
                        
Bezug
Beweis Summe 1/k! < 14/5: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Di 01.05.2012
Autor: Valerie20

Hi!

> Wie funktioniert denn so eine Abschätzung?

Du weist, das [mm]k! \ge 2^k[/mm]

Daraus folgt, dass [mm]\frac{1}{k!} \le \frac{1}{2^k}[/mm]

Damit ist auch: [mm] \summe_{k=0}^{n}\bruch{1}{k!} \le \summe_{k=0}^{n}\bruch{1}{2^k} [/mm]

[mm]\summe_{k=0}^{n}\bruch{1}{2^k} [/mm] kann man umschreiben als: [mm]\summe_{k=0}^{n}(\bruch{1}{2})^k [/mm]

Die geometrische Reihe ist: [mm]g_n=\summe_{k=0}^{n}q^k=\bruch{1}{1-q} (n\to\infty)[/mm]

In deinem Fall also: [mm]\summe_{k=0}^{n}(\bruch{1}{2})^k = \frac{1}{1-\frac{1}{2}}=2[/mm]

Valerie




Bezug
                                
Bezug
Beweis Summe 1/k! < 14/5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Di 01.05.2012
Autor: helicopter

Vielen Dank, ich habs jetzt verstanden.

Der Fall n [mm] \le [/mm] 4 wird gesondert behandelt weil n! > [mm] 2^n [/mm] erst ab der 5 gezeigt wurde, das heißt ab n=5 darf ich die geometrische Reihe nutzen?

Also ich habs jetzt so aufgeschrieben:


[mm] \summe_{k=5}^{n}\bruch{1}{k!} [/mm] < [mm] \summe_{k=5}^n(\bruch{1}{2})^k [/mm]
==> [mm] \summe_{k=1}^{4}\bruch{1}{k!}+\summe_{k=5}^{n}\bruch{1}{k!} [/mm] <  [mm] \summe_{k=1}^{4}\bruch{1}{k!}+\summe_{k=5}^n(\bruch{1}{2})^k [/mm] = [mm] (\summe_{k=1}^{4}\bruch{1}{k!}-\summe_{k=1}^4(\bruch{1}{2})^k)+\summe_{k=0}^n(\bruch{1}{2})^k [/mm]

Wenn man die Summen ausrechnet kommt etwas knapp unter [mm] \bruch{14}{5} [/mm] raus, ich denke das stimmt so.

Nochmals vielen Dank

Bezug
        
Bezug
Beweis Summe 1/k! < 14/5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Di 01.05.2012
Autor: Richie1401

Allgemein muss ich ehrlich sagen, dass ich die Aufgabe ziemlich stumpf finde.
Die Reihe geht für [mm] n\to \infty [/mm] zu e. Also ist für [mm] n<\infty [/mm] die Reihe $ [mm] \summe_{k=0}^{n}\bruch{1}{k!}
Dass die Reihe gen e geht wäre zu zeigen, aber kein Problem.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de