www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Beweis Summenregel der Mächtig
Beweis Summenregel der Mächtig < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Summenregel der Mächtig: Beweis
Status: (Frage) beantwortet Status 
Datum: 09:41 Mi 21.01.2009
Autor: RedWing

Aufgabe
[mm] |M_1 \cup M_2| [/mm] + [mm] |M_1 \cap M_2| [/mm] = [mm] |M_1| [/mm] + [mm] |M_2| [/mm]

Hallo,
ich soll den folgenden Satz beweisen. Nur leider habe ich überhaupt keinen Ansatz wie ich an die Aufgabe herangehen soll.
Ich weiß nur, dass die Elemente von M1 und M2 quasi doppelt gezählt werden auf der rechten Seite.

Hat jemand eine Idee bzw. einen Ansatz wie man an diesen Beweis rangehen kann?

MfG RedWing

        
Bezug
Beweis Summenregel der Mächtig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mi 21.01.2009
Autor: luis52

Moin,

habe deine Aufgabe mal etwas leserlicher gestaltet.

Sind [mm] $M_1$ [/mm] und [mm] $M_2$ [/mm] *endliche* Mengen?

vg Luis

Bezug
                
Bezug
Beweis Summenregel der Mächtig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Mi 21.01.2009
Autor: RedWing

Ja sind sie.

Bezug
        
Bezug
Beweis Summenregel der Mächtig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Mi 21.01.2009
Autor: fred97


> [mm]|M_1 \cup M_2|[/mm] + [mm]|M_1 \cap M_2|[/mm] = [mm]|M_1|[/mm] + [mm]|M_2|[/mm]
>  Hallo,
>  ich soll den folgenden Satz beweisen. Nur leider habe ich
> überhaupt keinen Ansatz wie ich an die Aufgabe herangehen
> soll.
>  Ich weiß nur, dass die Elemente von M1 und M2 quasi
> doppelt gezählt werden auf der rechten Seite.

Prima ! Du hast das wesentliche erkannt !

Sei [mm] $n_1 [/mm] = [mm] |M_1|$ [/mm] , [mm] $n_2 [/mm] = [mm] |M_2|$ [/mm] und [mm] $n_3 [/mm] = [mm] |M_1 \cap M_2|$ [/mm]

Wieviele Elemente enthält dann wohl  [mm] |M_1 \cup M_2| [/mm] ??



FRED

>  
> Hat jemand eine Idee bzw. einen Ansatz wie man an diesen
> Beweis rangehen kann?
>  
> MfG RedWing  


Bezug
                
Bezug
Beweis Summenregel der Mächtig: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:50 Sa 24.01.2009
Autor: RedWing

Hallo,
dankre für die Antwort.
Leider komme ich mit deinen Ansatz immer noch nicht weiter. Wie muss ich denn vorgehen, um die Aussage zu beweisen und zu zeigen, dass |M1 v M2| so viele Elemente enthält wie |M1|+|M2|-|M1 und M2| ?

Viele Grüße

Bezug
                        
Bezug
Beweis Summenregel der Mächtig: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 26.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweis Summenregel der Mächtig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Mi 21.01.2009
Autor: luis52

Moin,
mir faellt derzeit nichts Gescheiteres ein. Nutze Folgendes aus:
Fuer endliche Mengen $A,B$ gilt

1) Fuer [mm] $B\subset [/mm] A$  ist [mm] $|A\setminus [/mm] B|=|A|-|B|$.
2) Sind A und B disjunkt, so ist [mm] $|A\cup [/mm] B|=|A|+|B|$.

(Noetigenfalls musst du das zeigen.)

Es gilt [mm] $M_1\cup M_2=A\cup B\cup [/mm] C$ mit [mm] $A=M_1\setminus(M_1\cap M_2)$, $B=M_1\cap M_2$, [/mm]
[mm] $C=M_2\setminus(M_1\cap M_2)$ [/mm] (mach dir ein Venn-Diagramm). Beachte
dass $A,B,C$ disjunkt sind.

Vielleicht gibt es ja einen eleganteren Weg ...

vg Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de