www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Beweis Urbildmenge
Beweis Urbildmenge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Urbildmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mo 01.11.2010
Autor: Zelos

Aufgabe
Beweisen Sie die folgende Teilaussage (Spezialfall): Gegeben seien eine Abbildung f: D -> M sowie Teilmengen B1, B2 [mm] \subset\ [/mm] M . Dann gilt:

[mm] f^{-1} [/mm] (B1 [mm] \cap [/mm] B2) = [mm] f^{-1} [/mm] (B1) [mm] \cap f^{-1}(B2) [/mm]



Hallo,
leider habe ich etwas zu spät gemerkt, dass ich die Aufgabe nicht ganz verstehe, sie aber morgen abgeben muss. Wie dem auch sei...

Ich soll oben stehende Aussage beweisen, komme aber nicht ganz weiter. Ich hoffe, jemand kann sich anschauen, was ich bisher gemacht habe und mir sagen, ob es soweit richtig ist bzw. wie es weitergeht, weil ich absolut keine Ahnung habe, wie ich das fortführen könnte.


x [mm] \in f^{-1} [/mm] (B1 [mm] \cap [/mm] B2)
[mm] \gdw [/mm] x [mm] \in f^{-1} [/mm] (B1) [mm] \wedge [/mm] x [mm] \in f^{-1} [/mm] (B2)
[mm] \gdw [/mm] (x [mm] \in [/mm] M [mm] \wedge [/mm] f(x) [mm] \in [/mm] B1) [mm] \wedge [/mm] (x [mm] \in [/mm] M [mm] \wedge [/mm] f(x) [mm] \in [/mm] B2)


In der letzten Zeile habe ich die Definition der Urbildmenge benutzt, komme jetzt aber nicht weiter. Natürlich könnte ich durch das Kommutativgesetz noch ein x [mm] \in [/mm] D "rausschmeißen", aber dann würde ich ebenfalls nicht weiterkommen. Ich hoffe, jemand kann mir da helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Urbildmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 01.11.2010
Autor: meili

Hallo Zelos,

> Beweisen Sie die folgende Teilaussage (Spezialfall):
> Gegeben seien eine Abbildung f: D -> M sowie Teilmengen B1,
> B2 [mm]\subset\[/mm] M . Dann gilt:
>  
> [mm]f^{-1}[/mm] (B1 [mm]\cap[/mm] B2) = [mm]f^{-1}[/mm] (B1) [mm]\cap f^{-1}(B2)[/mm]
>  
>
> Hallo,
>  leider habe ich etwas zu spät gemerkt, dass ich die
> Aufgabe nicht ganz verstehe, sie aber morgen abgeben muss.
> Wie dem auch sei...
>  
> Ich soll oben stehende Aussage beweisen, komme aber nicht
> ganz weiter. Ich hoffe, jemand kann sich anschauen, was ich
> bisher gemacht habe und mir sagen, ob es soweit richtig ist
> bzw. wie es weitergeht, weil ich absolut keine Ahnung habe,
> wie ich das fortführen könnte.
>  
>
> x [mm]\in f^{-1}[/mm] (B1 [mm]\cap[/mm] B2)
>   [mm]\gdw[/mm] x [mm]\in f^{-1}[/mm] (B1) [mm]\wedge[/mm] x [mm]\in f^{-1}[/mm] (B2)

[ok]

> [mm]\gdw[/mm] (x [mm]\in[/mm] M [mm]\wedge[/mm] f(x) [mm]\in[/mm] B1) [mm]\wedge[/mm] (x [mm]\in[/mm] M [mm]\wedge[/mm]
> f(x) [mm]\in[/mm] B2)

Ist das hier nur ein Schreibfehler?
Es müsste
[mm]\gdw[/mm] (x [mm]\in[/mm] D [mm]\wedge[/mm]  f(x) [mm]\in[/mm] M [mm]\wedge[/mm] f(x) [mm]\in[/mm] B1) [mm]\wedge[/mm] (x [mm]\in[/mm] D [mm]\wedge[/mm]  f(x) [mm]\in[/mm] M [mm]\wedge[/mm]
f(x) [mm]\in[/mm] B2)
sein.

>  
>
> In der letzten Zeile habe ich die Definition der
> Urbildmenge benutzt, komme jetzt aber nicht weiter.
> Natürlich könnte ich durch das Kommutativgesetz noch ein
> x [mm]\in[/mm] D "rausschmeißen", aber dann würde ich ebenfalls
> nicht weiterkommen. Ich hoffe, jemand kann mir da helfen.
>  

zu zeigen ist:
( [mm]f^{-1}[/mm] (B1 [mm]\cap[/mm] B2) [mm] $\subseteq$[/mm]  [mm]f^{-1}[/mm] (B1) [mm]\cap f^{-1}(B2)[/mm]) [mm] $\wedge$ [/mm] ( [mm]f^{-1}[/mm] (B1 [mm]\cap[/mm] B2) [mm] $\supseteq$[/mm]  [mm]f^{-1}[/mm] (B1) [mm]\cap f^{-1}(B2)[/mm])

Also noch ein Strang mit: sei y [mm]\in f^{-1}[/mm] (B1) [mm]\cap f^{-1}[/mm]( B2) ....
bearbeiten.

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili


Bezug
                
Bezug
Beweis Urbildmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mo 01.11.2010
Autor: Zelos

Das war ein Schreibfehler, ja. Aber genau deswegen bin ich auch nicht weitergekommen
Habe es jetzt lösen können, danke sehr. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de