www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Beweis Wahrscheinlichkeitsraum
Beweis Wahrscheinlichkeitsraum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Wahrscheinlichkeitsraum: Anregung
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 03.04.2013
Autor: Grischa87

Aufgabe 1
Beweisen Sie den Satz für einen endlichen Wahrscheinlichkeitsraum (Ω,P):

(a) ∀A1,...,An ⊂ Ω disjunkt: [mm] P(\bigcup_{i=1}^{m}A_{i}) [/mm] = [mm] \summe_{i=1}^{n}P(A_{i}) [/mm]
Hinweis: Verwenden Sie vollständige Induktion.


Aufgabe 2
(b) ∀A⊂B⊂Ω: [mm] $P(B\setminus [/mm] A)=P(B) - P(A)$ Insbesondere gilt P (A) ≤ P (B).


Aufgabe 3
(c) ∀A,B⊂Ω: P(A∪B)=P(A)+P(B)−P(A∩B)


Grüße,

ich habe keinen Schimmer wie ich an die Beweise herangehen soll. Anwenden von mathematischen Konstrukten...ok, aber bei Beweisen reicht mein mathematisches Verständnis nicht aus.

Anregungen erwünscht.

Viele Grüße

        
Bezug
Beweis Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mi 03.04.2013
Autor: luis52

Moin

> Beweisen Sie den Satz für einen endlichen
> Wahrscheinlichkeitsraum (Ω,P):
>  
> (a) ∀A1,...,An ⊂ Ω disjunkt: [mm]P(\bigcup_{i=1}^{m}A_{i})[/mm]
> = [mm]\summe_{i=1}^{n}P(A_{i})[/mm]
>  Hinweis: Verwenden Sie vollständige Induktion.

Was musst du denn tun, um die VI anwenden zu koennen?


>  (b) ∀A⊂B⊂Ω: [mm]P(B\A)=P(B)−P(A)[/mm] Insbesondere gilt P (A) ≤ P (B).

Hier ist wohl der Wurm drin: Es ist stets [mm] $\emptyset\subset [/mm] B$. Dann wuerde immer gelten $P(B)=0_$.




>  (c) ∀A,B⊂Ω: P(A∪B)=P(A)+P(B)−P(A∩B)

Hier ueberlege dir mal selber was. Zeichne vielleicht mal ein Venn-Diagramm.

vg Luis


  

Bezug
                
Bezug
Beweis Wahrscheinlichkeitsraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 05.04.2013
Autor: Grischa87

Aufgabe
> Beweisen Sie den Satz für einen endlichen
> Wahrscheinlichkeitsraum (Ω,P):
>  
> (a) ∀A1,...,An ⊂ Ω disjunkt:  
> =  
>  Hinweis: Verwenden Sie vollständige Induktion.

Was musst du denn tun, um die VI anwenden zu koennen?

Da fängt die Problematik für mich schon an. Bei einer VI habe ich bisher zuerst geprüft, ob die Annahme für natürliche Zahlen funktioniert (Induktionsanfang). Anschließend angenommen, dass sie für ein n stimmt (Induktionsannahme) und gezeigt das auch k+1 gilt. Das ganze Eingesetzt, Induktionsannahme eingesetzt, umgeformt ... Fertig.

mir erschließt sich bei dieser Aufgabe nicht mal der Induktionsanfang.



Bezug
                        
Bezug
Beweis Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Fr 05.04.2013
Autor: luis52

Deine Formulierung ist leider schraeg: Du musst zeigen:

$ [mm] P(\bigcup_{i=1}^{\red{n}}A_{i}) [/mm] $ = $ [mm] \summe_{i=1}^{n}P(A_{i}) [/mm] $


>  Da fängt die Problematik für mich schon an. Bei einer VI
> habe ich bisher zuerst geprüft, ob die Annahme für
> natürliche Zahlen funktioniert (Induktionsanfang).

Nicht allgemein fuer natuerliche Zahlen, sondern fuer *eine*, zumeist $n=1$.

> Anschließend angenommen, dass sie für ein n stimmt
> (Induktionsannahme)

Korrekt.

> und gezeigt das auch k+1 gilt.

[notok] Fuer $n+1_$.

> mir erschließt sich bei dieser Aufgabe nicht mal der
> Induktionsanfang.

Fuer $n=1_$ ist $ [mm] P(\bigcup_{i=1}^{n}A_{i}) [/mm] =  [mm] \summe_{i=1}^{n}P(A_{i})\iff P(A_1)=P(A_1)$, [/mm] was offenkundig korrekt ist.

Nimm nun an, dass gilt $ [mm] P(\bigcup_{i=1}^{n}A_{i}) [/mm] =  [mm] \summe_{i=1}^{n}P(A_{i})$ [/mm] fuer disjunkte [mm] $A_1,\dots,A_n$. [/mm]
Zu zeigen ist, dass daraus folgt $ [mm] P(\bigcup_{i=1}^{n+1}A_{i}) [/mm] =  [mm] \summe_{i=1}^{n+1}P(A_{i})$ [/mm] fuer disjunkte [mm] $A_1,\dots,A_n,A_{n+1}$. [/mm]
  
Hinweis: [mm] $\bigcup_{i=1}^{n+1}A_{i}=\left(\bigcup_{i=1}^{n}A_{i}\right)\cup A_{n+1}=\bigcup_{i=1}^{n}(A_{i}\cup A_{n+1})$. [/mm]

vg Luis
  


Bezug
                
Bezug
Beweis Wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Fr 05.04.2013
Autor: Gonozal_IX

Hiho,

> Hier ist wohl der Wurm drin: Es ist stets [mm]\emptyset\subset B[/mm].
> Dann wuerde immer gelten [mm]P(B)=0_[/mm].

schau dir mal den Code genauer an.
Nur die Darstellung hats zerlegt, die Aussage im Code stimmt :-)

MFG,
Gono.

Bezug
                        
Bezug
Beweis Wahrscheinlichkeitsraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Fr 05.04.2013
Autor: luis52

Hi Gono,

danke fuer die Erleuchtung. Hab's mal korrigiert.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de