Beweis affiner Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] (\mathcal{A}, [/mm] V, f) sei eine affine Geometrie und [mm] \mathcal{E} \subset \mathcal{A} [/mm] ein affiner Unterraum (Ebene) in [mm] \mathcal{A}. [/mm] Man zeige, dass dann auch [mm] (\mathcal{E}, V(\mathcal{E}), [/mm] f) wieder eine affine Geometrie ist. |
Hallöle,
ich belege gerade einen Kurs zu Konvexe Mengen und wusste nicht genau, wo ich dieses Thema einordnen soll, aber ich schätze, dass das schon noch ziemlich viel Algebra ist. Wir haben Axiome zur Definition einer affinen Geometrie und einem affinen Unterraum aufgeschrieben:
Affine Geometrie: [mm] (\mathcal{A}, [/mm] V, f) mit
(AI) V Vektorraum
(AII) [mm] \forall [/mm] A [mm] \in \mathcal{A} \forall [/mm] v [mm] \in [/mm] V [mm] \exists [/mm] B [mm] \in \mathcal{A} [/mm] : [mm] \overline{AB} [/mm] = v
(AIII) A, B [mm] \in \mathcal{A}, [/mm] A [mm] \not= [/mm] B [mm] \Rightarrow [/mm] f(A,B) = [mm] \overline{AB} \not= [/mm] 0 (Nullvektor)
(AIV) [mm] \overline{AB} [/mm] = [mm] \overline{AC} [/mm] + [mm] \overline{CB}
[/mm]
Affiner Unterraum: [mm] \mathcal{E} \subset \mathcal{A} [/mm] heißt Ebene, genau dann, wenn:
(EI) [mm] V(\mathcal{E}) [/mm] ist linearer Unterraum in V
(EII) [mm] \forall [/mm] A [mm] \in \mathcal{E} \forall [/mm] v [mm] \in V(\mathcal{E}) \exists [/mm] B [mm] \in \mathcal{E} [/mm] : [mm] \overline{AB} [/mm] = v
Das ist ja schonmal viel zum arbeiten.
Mein Frage jetzt: Um zu zeigen, dass ein affiner Unterraum wieder eine affine Geometrie ist, sollte ich da alle Axiome der affinen Geometrie überprüfen mithilfe der Axiome eines affinen Unterraums? Und wenn ja, wovon kann ich ausgehen und wo muss ich etwas beweisen?
Ich würde mit (AI) beginnen und müsste somit überprüfen, ob die Ebene in einem Vektorraum aufgespannt wird. Doch nach (EI) ist der Vektorraum von [mm] \mathcal{E} [/mm] ja ein linearer Unterraum von V. Reicht das schon, um (AI) als erfüllt annehmen zu können?
(AII) ist ja dann, dasselbe wie (EII), nur das der Vektorraum ein anderer ist und das er [mm] V(\mathcal{E}) [/mm] ein Vektorraum ist, haben wir ja eben gezeigt, also wäre das ja auch automatisch erfüllt?!
Bei (AIII) und (AIV) weiß ich nicht so recht, wie ich vorgehen soll. Für mich ist das irgendwie klar, da wir (AI) ja schon gezeigt haben. Wie soll ich das also machen? Danke im Voraus!
Lg lenzlein
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Do 27.10.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|