www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Beweis der Nullstellen
Beweis der Nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Nullstellen: ganzrat.Fkt
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 04.09.2007
Autor: mana

Aufgabe
a) Begründen sie, dass eine ganzrat. Fkt. 3. Grades mindestens eine Nullstellen haben muss! b) Begründen sie, dass eine zum Ursprung symmetrische Fkt. eine ungerade Anzahl von Nullstellen hat.

Hallo,

zu a) habe ich mir überlegt, dass eine fkt. 3. Grades von unten links nach oben rechts verläuft. also muss ihr Graf mindestens einmal die x-Achse schneiden

zu b) da die Fkt. punktsymmetrisch ist, muss sie entweder 1 oder 3 mal (usw) die x Achse schneiden.


Ich bräuchte aber mal eure HIlfe, ob das so richtig ist und wie man das richtig mathematisch formuliert, für einen 12 Klässler, der Grundkurs mathe hat. Danke im Voraus


Mana

        
Bezug
Beweis der Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Di 04.09.2007
Autor: Teufel

Hi!

a)
Ist leider noch etwas schwammig, da nich jede Funktion 3. Grades von unten links nach oben rechts verlaufen muss.

b)
ist leider auch noch nicht ganz ausgereift. Dass es 1, 3, 5, 7, ... Nullstellen gibt sollst du ja begründen!

Aber kein Problem, ich stell mal meine Variante vor, die vielleicht auch nicht perfekt ist.

a)
Wenn man den Grenzwert der Funktion 3. Grades f(x)=ax³+bx²+cx+d gegen [mm] \pm \infty [/mm] betrachtet, dann geht die Funktion für [mm] x->\infty [/mm] gegen [mm] \infty [/mm] und für [mm] x->-\infty [/mm] gegen [mm] -\infty [/mm] (WENN a>0, ansonsten andersrum). Fakt ist also, dass eine Seite der Funktion "unendlich weit nach oben" und die andere Seite "unendlich weit nach unten" geht, und dabei die x-Achse einmal geschnitten werden muss.
(Ja, es geht vielleicht besser, aber naja :) ist spät)

b)
Wenn die Funktion zum Ursprung symmetrisch ist, ist schon mal eine Nullstelle im Ursprung vorhanden. Und wenn die Funktion eine weitere Nullstelle z.B. im positiven Bereich hat (z.B. bei 3), dann muss sie durch die Punktsymmetrie um O auch eine im negativen bereich (bei -3) haben.
Also es gibt eine Nullstelle in der Mitte sozusagen und dann können immer nur noch Nullstellen im Doppelpack dazukommen ;) 1;3;5;7... So sollte man das nicht schreiben, aber das könnte man als Grundidee nehmen

Bezug
        
Bezug
Beweis der Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mi 05.09.2007
Autor: rabilein1

Da der Teufel die schwarze Mathemagie beherrscht, war er mal wieder schneller als ich *lach*.

Zu a): siehe Antwort vom Teufel = du hattest von links oben nach rechts unten vergessen

Zu b): eine Nullstelle verläuft durch den Ursprung. Alle anderen Nullstellen können nur paarweise auftreten, nämlich bei X und Minus X. Somit ergibt sich immer eine ungerade Anzahl an Nullstellen



Bezug
                
Bezug
Beweis der Nullstellen: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Mi 05.09.2007
Autor: mana

Vielen Dank an euch beiden, es war so spät gestern nacht, aber trotzdem habt ihr mir geholfen. Ich hatte schon 6std nachhilfe gegeben und konnte nihct mehr klar denken ;-)

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de