www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Beweis einer Größer-Relation
Beweis einer Größer-Relation < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Größer-Relation: Idee
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 22.06.2010
Autor: sackpower

Aufgabe
Die Behauptung für [mm] \{a,p,q\}\in\IN [/mm] , die gezeigt werden soll, lautet:
Ist q>p, dann gilt: [mm] \bruch{p+a}{q+a} [/mm] > [mm] \bruch{p}{q} [/mm]

Ich möchte mathematisch exakt beweisen, dass jeder echte Bruch größer wird, wenn ich zu Zähler und Nenner dieselbe natürliche Zahl hinzuzähle, also beispielsweise:
[mm] \bruch{5+2}{7+2} [/mm] > [mm] \bruch{5}{7} [/mm]

Ich komme bei meiner Beweisführung leider immer zu dem Ergebnis, dass die Größer-Relation gilt, wenn q>p ist, was ich eigentlich vorausgesetzt habe. Begehe ich hier einen Zirkelschluss?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis einer Größer-Relation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 22.06.2010
Autor: reverend

Hallo sackpower, [willkommenmr]

Es ist leichter zu sehen, worauf Du Dich beziehst, wenn Du die Rechnung mit einstellst.
In diesem Fall ist die aber leicht, und in der Tat ergibt sich nach ganz wenigen Umformungen ja wieder die Voraussetzung.

Das ist kein Zirkelschluss, da die Umformung die Voraussetzung q>p ja gar nicht benötigt hat. Das ist nur eben ihr Ergebnis.

Du hast damit also gezeigt, dass die beiden Aussagen äquivalent sind: Beweis erbracht.

Grüße
reverend

Bezug
                
Bezug
Beweis einer Größer-Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Di 22.06.2010
Autor: pokermoe

Hi

Wenn ich dich richtig verstanden habe , dann formst du die ungl.
um und kommst auf die Voraussetzung.
Überlege mal ob du einfach die umgekehrten Umformungen machen kannst und den Beweis "von hinten nach vorne " lesen kannst.

Gruß

Bezug
        
Bezug
Beweis einer Größer-Relation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Di 22.06.2010
Autor: steppenhahn

Hallo,

nur noch eine Bemerkung:

[mm] $\frac{p+a}{q+a} [/mm] = [mm] 1-\frac{q-p}{q+a} [/mm] > 1 - [mm] \frac{q-p}{q} [/mm] = [mm] \frac{p}{q}$ [/mm]

(Nenner wird kleiner (a > 0), also wird der Bruch größer und 1-Bruch wird kleiner)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de