www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Beweis einer Lösung in Null
Beweis einer Lösung in Null < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Lösung in Null: für f(x)=x über Integral
Status: (Frage) beantwortet Status 
Datum: 19:12 Do 15.01.2009
Autor: Skalar85

Aufgabe
f:[0,1] [mm] \to \IR [/mm] ist stetig, sodass gilt: [mm] \integral_{0}^{1}{f(x) dx}= [/mm] 1/2

Beweisen sie unter Benutzung von [mm] \integral_{0}^{1}{x dx}= [/mm] 1/2 dass f(x)=x mindestens eine Lösung in Null hat.

Kann mir jemand helfen?
Ich habe keine Idee was ich genau zeigen soll. Was ist damit gemeint eine Lösung in Null hat?
Beide Integrale haben den selben Flächeninhalt, daher dachte ich beide Funktionen gleich zu setzen.
Komme dann auf :
[mm] \integral_{0}^{1}{f(x) dx}-\integral_{0}^{1}{x dx}=0 [/mm]
aber weiß nicht wie ich dann weiter fort fahren soll.


        
Bezug
Beweis einer Lösung in Null: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Do 15.01.2009
Autor: angela.h.b.


> f:[0,1] [mm]\to \IR[/mm] ist stetig, sodass gilt:
> [mm]\integral_{0}^{1}{f(x) dx}=[/mm] 1/2
>  
> Beweisen sie unter Benutzung von [mm]\integral_{0}^{1}{x dx}=[/mm]
> 1/2 dass f(x)=x mindestens eine Lösung in Null hat.
>  Kann mir jemand helfen?
> Ich habe keine Idee was ich genau zeigen soll. Was ist
> damit gemeint eine Lösung in Null hat?

Hallo,

darauf kann ich mir auch keinen Reim machen.

ich glaube, daß Du in Wahrheit zeigen sollst, daß die Gleichung f(x)=x eine Lösung in [0,1] hat.

Ich würde da mal so rangehen:

mir überlegen, warum f(x) nicht komplett über g(x)=x verlaufen kann.

Überlegen, warum f(x) nicht komplett unterhalb g(x)=x verlaufen kann.

Zwischenwertsatz verwenden.

Gruß v. Angela

>  Beide Integrale haben den selben Flächeninhalt, daher

> dachte ich beide Funktionen gleich zu setzen.
>  Komme dann auf :
>  [mm]\integral_{0}^{1}{f(x) dx}-\integral_{0}^{1}{x dx}=0[/mm]
> aber weiß nicht wie ich dann weiter fort fahren soll.
>  


Bezug
                
Bezug
Beweis einer Lösung in Null: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Do 15.01.2009
Autor: Skalar85

ich werds mal versuchen und dann die antwort rein schreiben wenn unsere tutorin die lösung rausrückt. klausurzulassung habe ich ja schon aber ich willst trotzdem raus kriegen ich versuchs einfach mal ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de