www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis einer Ungleichung
Beweis einer Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Ungleichung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 10:55 Fr 06.10.2006
Autor: Vertex

Aufgabe
Zeige, dass für alle n [mm] \in \IN [/mm] gilt:

[mm] \summe_{k=1}^{n}\bruch{1}{k^{2}}\le2-\bruch{1}{n} [/mm]

Hallo zusammen,

obige Aufgabe gilt es zu lösen.
Die vollständige Induktion soll zum Zuge kommen.
Ein Induktionsanfang mit n=1 lässt sich flink machen:

[mm] \summe_{k=1}^{1}\bruch{1}{k^{2}}=\bruch{1}{1^{2}}=1\le1=2-\bruch{1}{1} [/mm]

Induktionsschritt auf n+1

... und jetzt habe ich absolut keine Ahnung wie es weitergehen soll.

Das Ziel wäre ja
[mm] \summe_{k=1}^{n+1}\bruch{1}{k^{2}}\le2-\bruch{1}{n+1} [/mm]

Ich habe schon ein paar Ansätze ausprobiert und vermute das mir die Schwarzsche Ungleichung
[mm] (\summe_{k=1}^{n}a_{k}b_{k})^{2}\le(\summe_{k=1}^{n}a_{k}^{2})(\summe_{k=1}^{n}b_{k}^{2}) [/mm]

weiterhelfen kann. Wie genau und ob dann auch wirklich, weiss ich leider nicht.

Ein Hinweis/ Tipp für eine Lösung wäre sehr nett.

Vielen Dank und Gruß,
Vertex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Fr 06.10.2006
Autor: leduart

Hallo Vertex
Wie bei fast allen Induktionsbeweisen musst du wirklich die Induktiosvors. benutzen!! insbesondere bei Summen schreibt man IMMER summe bis n+1 als Summe bis n [mm] +a_{n+1} [/mm]

> Zeige, dass für alle n [mm]\in \IN[/mm] gilt:
>  
> [mm]\summe_{k=1}^{n}\bruch{1}{k^{2}}\le2-\bruch{1}{n}[/mm]

> Induktionsschritt auf n+1
>  

> Das Ziel wäre ja
>   [mm]\summe_{k=1}^{n+1}\bruch{1}{k^{2}}\le2-\bruch{1}{n+1}[/mm]

Hier also:
[mm]\summe_{k=1}^{n+1}\bruch{1}{k^{2}}=\summe_{k=1}^{n}\bruch{1}{k^{2}}+\bruch{1}{(n+1)^2}\le1-\bruch{1}{n}+\bruch{1}{(n+1)^2}[/mm]

So, und jetzt musst du nur noch zeigen, dass [mm] $\bruch{1}{n}-\bruch{1}{(n+1)^2}\ge\bruch{1}{n+1} [/mm] $ist. Das solltest du schaffen!
Gruss leduart




Bezug
                
Bezug
Beweis einer Ungleichung: Dankesehr
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Fr 06.10.2006
Autor: Vertex

Hallo Leduart,

danke für deine Hilfestellung. Glaubs oder nicht, aber ich hab wenige Minuten nach deiner Antwort bis jetzt gebraucht um zu verstehen warum deine Antwort richtig ist...

Ungleichungen werden nochmal mein Untergang sein...  Es lebe das Gleichheitszeichen!!

Vielen Dank nochmal, Gruß
Vertex



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de