www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Beweis für Mengengleichheit
Beweis für Mengengleichheit < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Mengengleichheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:24 Do 08.11.2012
Autor: MatheClown11

Aufgabe
Seien A,B,C Mengen. Zeigen Sie A x (B [mm] \cap [/mm] C) = (A x B) [mm] \cap [/mm] (A x C)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann ich mit Mengen gleich rechnen wie mit normalen Zahlen? Also einfach Klammern auflösen usw...
Mir würde das etwas komisch vorkommen doch eine andere Idee habe ich leider nicht!
Ich hoffe das verstoßt jetzt nicht gegen die Vorschriften :P
Ein Ansatz würde mir jedoch sehr helfen.

Vielen Dank im voraus :)

        
Bezug
Beweis für Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Do 08.11.2012
Autor: luis52

Moin MatheClown11,

zunaechst ein [willkommenmr]


Du musst zweierlei zeigen:

(i) [mm] $A\times(B\cap [/mm] C) [mm] \subset [/mm] (A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C)$

(ii) $(A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C) [mm] \subset A\times(B\cap [/mm] C)$

Ich fange mal mit (i) an. Sei [mm] $x\in A\times(B\cap [/mm] C)$. Dann koennen wir
schreiben $x=(r,s)$ mit [mm] $r\in [/mm] A$ und [mm] $s\in B\cap [/mm] C$. Also ist [mm] $s\in [/mm] B$
und [mm] $s\in [/mm] C$. Folglich ist [mm] $(r,s)\in A\times [/mm] B$ und [mm] $(r,s)\in A\times [/mm] C$,
also [mm] $x=(r,s)\in [/mm] (A [mm] \times B)\cap [/mm] (A [mm] \times [/mm] C)$.

Jetzt versuch dich mal selber an (ii).

vg Luis
                        

Bezug
                
Bezug
Beweis für Mengengleichheit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:36 Do 08.11.2012
Autor: MatheClown11

zuerst einmal danke für die Antwort, hat mir zumindest einmal einen Start gegeben :)
Allerdings komme ich beim zweiten Beweis jetzt auch nicht weiter.

Also ich habe angefangen mit:
Sei [mm] x\in [/mm] (A x B) [mm] \cap [/mm] (A x C) und x=(a,b,c), dann ist [mm] (a,b)\in [/mm] A x B und [mm] (a,c)\in [/mm] A x C
Also ist [mm] a\inA [/mm] und [mm] (b,c)\in [/mm] B x C oder?

Doch wie komme ich jetzt zur Durchschnittsmenge von B und C? Weil ich kann ja nicht sagen, dass b,c automatisch Elemente aus [mm] B\capC [/mm] sind oder? Da b und c ja Elemente von B und C sind.
Bin ich da vollkommen falsch oder fehlt mir nur ein teil zum puzzel? :P

Vielen dank :)

Bezug
                        
Bezug
Beweis für Mengengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Do 08.11.2012
Autor: tobit09

Hallo MatheClown11 und auch von mir ein herzliches [willkommenmr]!


> Also ich habe angefangen mit:
>  Sei [mm]x\in[/mm] (A x B) [mm]\cap[/mm] (A x C)

[ok]

> und x=(a,b,c)

Nein, x ist kein Tripel.

[mm] $x\in(A\times B)\cap(A\times [/mm] C)$ bedeutet [mm] $x\in A\times [/mm] B$ und [mm] $x\in A\times [/mm] C$.
Also existieren [mm] $a\in [/mm] A$ und [mm] $b\in [/mm] B$ mit $x=(a,b)$ sowie [mm] $a'\in [/mm] A$, [mm] $c\in [/mm] C$ mit $x=(a',c)$.

> Doch wie komme ich jetzt zur Durchschnittsmenge von B und
> C? Weil ich kann ja nicht sagen, dass b,c automatisch
> Elemente aus [mm]B\capC[/mm] sind oder? Da b und c ja Elemente von B
> und C sind.

Wegen $(a,b)=x=(a',c)$ gilt (a=a' und) b=c.

Kommst du damit weiter?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de