www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis für Ungleichheit
Beweis für Ungleichheit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für Ungleichheit: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:19 Mi 26.01.2005
Autor: Iceman

Hallo euch allen,

ich habe einige Aufgaben von folgendem Typ und würde gerne wissen wollen wie man sowas angeht und rechnet.

Zeige, dass für alle x [mm] \in \IR [/mm] folgende Ungleichheit gilt, und Gleichheit nur für x=0 gilt: [mm] e^x \ge [/mm] 1+x

Vielen Dank schon mal fürs Lesen!

        
Bezug
Beweis für Ungleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Mi 26.01.2005
Autor: Marcel

Hallo Iceman!

> Hallo euch allen,
>  
> ich habe einige Aufgaben von folgendem Typ und würde gerne
> wissen wollen wie man sowas angeht und rechnet.
>  
> Zeige, dass für alle x [mm]\in \IR[/mm] folgende Ungleichheit gilt,
> und Gleichheit nur für x=0 gilt: [mm]e^x \ge[/mm] 1+x

Das finde ich so ohne weiteres schwer zu beantworten (schwer, weil ich eure Vorlesung nicht kenne). Wir hatten die Aussage [mm]e^x\ge1+x[/mm] [mm]\forall x \in \IR[/mm] (in einem Einzeiler) so bewiesen:
[]http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf, Satz 7.7, S.67 (skriptinterne Zählung)
(Dort ist aber noch nicht bewiesen, dass Gleichheit genau im Falle $x=0$ gilt!)

Die Schwierigkeit ist, dass ihr evtl. ganz andere Hilfsmittel zur Verfügung habt:
Dazu würde mich interessieren:
Wie habt ihr die Exponentialfkt. definiert? (Über eine: Reihe? Folge?)
Habt ihr schon Ableitungen behandelt? Schonmal was über konvexe Funktionen gehört?

Die strenge Konvexität der Exp.-Fkt. könnte jedenfalls hilfreich sein (und das Wissen: [mm] $(\exp(0)=)\;e^0=1$)... [/mm]

Viele Grüße,
Marcel

Bezug
                
Bezug
Beweis für Ungleichheit: Definition
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 27.01.2005
Autor: Iceman

Von Konvexität habe ich noch nichts gehört. Ableitungen haben wir noch nicht so gemacht.

Die Exponentialfunktion haben wir so definiert:

exp(x): K [mm] \to [/mm] K, x [mm] \mapsto [/mm] exp(x)= [mm] \sum_{n=0}^{ \infty} \bruch{x^n}{n!} = 1+ \sum_{n=1}^{ \infty} \bruch{x^n}{n!} [/mm]

Dann haben wir noch dazu geschrieben (aufgrund eines vorherigen Beispiels) dass
[mm] \limes_{n\rightarrow\infty} \wurzel[n]{n!} [/mm] =  [mm] \infty [/mm]
Also gilt auch
[mm] \limes_{n\rightarrow\infty} \wurzel[n] \bruch{{\left| x^n \right|}}{n!} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{{\left| x \right|}}{{\wurzel[n]{n!}} [/mm] =0


Deshalb konvergiert die Reihe [mm] ( \sum \bruch{x^n}{n!})_n \in\IN_0 [/mm] absolut.


Danke dir für deine Antwort!!

Bezug
                        
Bezug
Beweis für Ungleichheit: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 12:52 So 30.01.2005
Autor: AdvDiaboli

Hallo Iceman,

Ich glaube die Lösung die von dir erwartet wird läuft darauf hinaus, dass du [mm] e^x-1-x [/mm] betrachtest (schreib [mm] e^x [/mm] in der von dir benutzten Reihendarstellung) und dann solltest du sehen, dass dieser Term für x [mm] \neq [/mm] 0 positiv ist.

viele Grüße
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de