www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Beweis für beliebige Mengen
Beweis für beliebige Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis für beliebige Mengen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 12.07.2007
Autor: Tvenna

Aufgabe
Für beliebige Mengen A, B, C gilt:
(A [mm] \cup [/mm] B) [mm] \setminus [/mm] (B [mm] \cap [/mm] C) = (B [mm] \cup [/mm] C) [mm] \setminus [/mm] (A [mm] \cap [/mm] B) [mm] \gdw [/mm] A = C

Hallo!
Ich habe folgendes Problem bei dieser Aufgabe:
Ich weiss nicht von wo nach wo ich beweisen muss.
Die Gleichhiet von Mengen zeige ich ja über die Teilmengen , und die Äquivalenz muss ich ja auch in beide Richtungen zeigen.
Muss ich dann also quasi vier Richtingen zeigen?
Erst das = und dann das [mm] \gdw [/mm] beweisen oder geht das auch irgendwie in einem Schritt?
Bin über jeden Tipp dankbar!
Viele Grüsse!

        
Bezug
Beweis für beliebige Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Do 12.07.2007
Autor: Somebody


> Für beliebige Mengen A, B, C gilt:
>  (A [mm]\cup[/mm] B) [mm]\setminus[/mm] (B [mm]\cap[/mm] C) = (B [mm]\cup[/mm] C) [mm]\setminus[/mm] (A
> [mm]\cap[/mm] B) [mm]\gdw[/mm] A = C
>  Hallo!
>  Ich habe folgendes Problem bei dieser Aufgabe:
>  Ich weiss nicht von wo nach wo ich beweisen muss.
>  Die Gleichhiet von Mengen zeige ich ja über die Teilmengen
> , und die Äquivalenz muss ich ja auch in beide Richtungen
> zeigen.
>  Muss ich dann also quasi vier Richtingen zeigen?
>  Erst das = und dann das [mm]\gdw[/mm] beweisen oder geht das auch
> irgendwie in einem Schritt?
>  Bin über jeden Tipp dankbar!

Sicher musst Du [mm] $\Leftarrow$ [/mm] und [mm] $\Rightarrow$ [/mm] beweisen. Die Richtung

[mm](A \cup B) \setminus(B \cap C) = (B \cup C)\setminus (A\cap B)\Leftarrow A = C[/mm]

ist nahezu trivial: Denn Du darfst dann ja $A=C$ annehmen und daher auf der linken Seite überall $C$ durch $A$ ersetzen: Du wirst sehen, dass die resultierende Gleichheit zwischen den beiden Mengen trivial zu beweisen ist (blosse Anwendung der Kommutativität von [mm] $\cup$ [/mm] und [mm] $\cap$). [/mm]

Für den Beweis der Richtung

[mm](A \cup B) \setminus(B \cap C) = (B \cup C)\setminus (A\cap B)\Rightarrow A = C[/mm]

könnte es eventuell einfacher sein, die Kontraposition

[mm]A\neq C \Rightarrow (A \cup B) \setminus(B \cap C) \neq (B \cup C) \setminus (A \cap B)[/mm]

zu betrachten: Dass also aus [mm] $A\neq [/mm] C$ folge, dass [mm](A \cup B) \setminus(B \cap C) = (B \cup C) \setminus (A \cap B)[/mm] falsch sei. Für den Beweis dieser Kontraposition kannst Du o.B.d.A. annehmen, dass es ein [mm] $x\in A\backslash [/mm] C$ gibt (denn $A$ und $C$ treten in der Behauptung symmetrisch auf, d.h. simultanes Ersetzen von $A$ durch $C$ und $C$ durch $A$ führt beide Seiten der zu beweisenden Äquivalenz in sich selbst über).
Wenn Du diesen Weg versuchst empfehle ich Dir noch folgende Fallunterscheidung zu machen: 1. Fall: [mm] $x\in [/mm] B$, 2. Fall [mm] $x\notin [/mm] B$. In beiden Fällen lässt sich die Gleichheit [mm](A \cup B) \setminus(B \cap C) = (B \cup C) \setminus (A \cap B)[/mm] leicht wiederlegen, indem man nachweist, dass die eine Seite $x$ enthält, die andere aber nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de