www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Beweis im Sehnenviereck
Beweis im Sehnenviereck < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im Sehnenviereck: Beweis
Status: (Frage) beantwortet Status 
Datum: 01:07 Mi 10.01.2007
Autor: dasam

Aufgabe
Zeigen Sie: Bei jedem Sehnenviereck gehen die Mittellote (Mittelsenkrechten) aller Seiten durch den Mittelpunkt seines Umkreises.

Hallo,
ich bin nicht sicher, ob das so der richtige Ansatz ist:
Sehnenviereck ABCD; Diagonalen AC und BD ziehen und beweisen, dass sich die Mittelsenkrechten der Seiten des Dreiecks ABC in seinem Umkreismittelpunkt treffen; das gleiche dann für Dreieck BCD.
Wäre das dann alles?
Gruß
Dasam


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis im Sehnenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Mi 10.01.2007
Autor: Walty


> Zeigen Sie: Bei jedem Sehnenviereck gehen die Mittellote
> (Mittelsenkrechten) aller Seiten durch den Mittelpunkt
> seines Umkreises.
>  Hallo,
>  ich bin nicht sicher, ob das so der richtige Ansatz ist:
>  Sehnenviereck ABCD; Diagonalen AC und BD ziehen und
> beweisen, dass sich die Mittelsenkrechten der Seiten des
> Dreiecks ABC in seinem Umkreismittelpunkt treffen; das
> gleiche dann für Dreieck BCD.
>  Wäre das dann alles?
>  Gruß
>  Dasam

Ist der Beweis mit dem Umkreis einfach, oder Euch als bewiesener Satz gegeben?

Mir fällt spontan ein, dass ich ja wenn ich die Radien zu den Eckpunkten einzeichne, ich über jeder beliebigen Sehne (oBdA! -ob sie nun zu einem Viereck gehört, oder peng) ein gleichschenkliges Dreieck aufspanne.

Das Dreick ABM sei nun zu untersuchen. Der Mittelpunkt der Sehne [AB] sei Q. Die Seitenhalbierende von M nach [AB] schneidet in Q. Es entstehen 2 Dreiecke AMQ und MBQ. Per Konstruktion sind aber nun die Seiten [MA]und [MB]gleichlang (=r) sowie auch die Seiten [AQ] und [QB]. Die Strecke [MQ] haben beide Dreiecke gemeinsam. Damit sind sie aber nach dem SSS-satz auch kongruent. Daraus folgt unmittelbar, dass die entsprechenden Winkel in den Dreiecken gleich groß sein müssen. Insbesondere die Winkel bei Q. Da Q auf [AB] liegt, ergibt sich dass beide Winkel = 90° sein müssen (Aussenwinkel = Innenwinkel) dh. aber auch dass MQ (oBdA) nicht nur die Seitenhalbierenbde, sondern gleichzeitig die Mittelsenkrechte des Dreiecks AMB ist.

q.e.d.

Bezug
                
Bezug
Beweis im Sehnenviereck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 25.01.2007
Autor: dasam

Jetzt muss ich doch noch einmal nachfragen:
Der Mittelpunkt des Kreises ist nicht gegeben - also ist das mit den Radien doch hinfällig!?
Oder kann ich einfach sagen, dass M durch die Mittellote zweier Sehnen konstruiert werden kann, um anschließend mit deinem Beweis fortzufahren?
Oder gibt es noch eine weitere Möglichkeit, das ganze zu beweisen?

Bezug
                        
Bezug
Beweis im Sehnenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Fr 26.01.2007
Autor: leduart

Hallo
Fuer einen Beweis muss der Mittelpunkt nicht gegeben sein! Es muss nur klar sein, dass ein Kreis einen hat, der von allen Kreispunkten denselben Abstand r hat.
dann weiss man, dass die dreiecke gleichscheklig sind usw. usw.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de