www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Beweis von Klein-Ungleichung
Beweis von Klein-Ungleichung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Klein-Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Fr 12.11.2010
Autor: wee

Hallo,

ich beschäftige mich gerade mit der Klein-Ungleichung für konvexe Funktionen angewandt auf Dichteoperatoren und kann mir leider den Beweis nicht ganz erklären.

Satz: Es sei $f$ eine konvexe [mm] C^1 [/mm] Funktion mit geeigneten Definitionsbereich und [mm] \rho, \sigma [/mm] seinen zwei Dichteoperatoren [mm] (\rho, \sigma [/mm] positiv, [mm] tr\rho=tr\sigma=1). [/mm]
Dann gilt [mm] $$tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)]\geq [/mm] 0.$$

Beweis: Zerlege [mm] \rho=\sum_n\lambda_nE_n, [/mm] wobei die [mm] \lambda_n [/mm] die Eigenwerte von [mm] \rho [/mm] sind und [mm] E_n [/mm] eindimensionale Projektionen auf die zugehörigen Eigenräume.
Es seien [mm] {x_n} [/mm] und [mm] {y_m} [/mm] zwei vollständige Orthonormalsysteme, die aus den Eigenvektoren von [mm] \rho [/mm] bzw. [mm] \sigma [/mm] bestehen, d.h. [mm] $\rho x_n=\lambda_nx_n$ [/mm] und [mm] $\sigma y_m=\mu_my_m$. [/mm]
Dann gilt:

[mm] tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)] \notag \\ [/mm] = [mm] \sum_n(f(\lambda_n)-\sum_m|\langle x_n,y_m\rangle|^2f(\mu_m) [/mm]
[mm] -\sum_m(|\langle x_n,y_m\rangle|^2(\lambda_n-\mu_m)f^\prime(\mu_m)) \notag \\ [/mm] = [mm] \sum_{n,m}|\langle x_n,y_m\rangle|^2(f(\lambda_n)-f(\mu_m)-(\lambda_n-\mu_m)f^\prime(\mu_m)) \notag. [/mm]

Der letzte Ausdruck ist positive, denn $f$ ist konvex.

________________________________________________________

Das war der Beweis. Die Herangehensweise ist klar, meine Fragen beziehen sich auf die Gleichung. Es geht mir darum, die Zwischenschritte bei den beiden Umformungen auszuformulieren.

Der erste wäre wohl:

[mm] tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)] [/mm]
=  [mm] \sum_n(\langle x_n,f(\rho)x_n\rangle-\langle x_n,f(\sigma)x_n\rangle-\langle x_n, (\rho-\sigma)f^\prime(\sigma)x_n\rangle) [/mm]
=  [mm] \dots [/mm]


Der erste Summand ist dann klar, man schreibt [mm] f(\rho)=\sum_nf(\lambda)E_n. [/mm] Wenn man die Summe auf [mm] x_n [/mm] anwendet, erhält man [mm] f(\lambda_n )x_n [/mm] was im Skalarprodukt mit [mm] x_n [/mm] dann einfach [mm] f(\lambda_n) [/mm] ergibt.

Der zweite und dritte Summand ist mir nicht so klar. Vermutlich schreibt man [mm] f(\sigma)=\sum_mf(\mu_m)E_m, [/mm] man betrachtet also [mm] \langle x_n,\sum_mf(\mu_m)E_m x_n\rangle. [/mm] Jetzt weis ich aber nicht, wie man den Ausdruck weiter umformt, damit am Ende [mm] \sum_m|\langle x_n,y_m\rangle|^2f(\mu_m) [/mm] raus kommt.

Der dritte Summand wird dann wohl wie der zweite zu behandeln sein.


Ich bin für jede Hilfe bzgl. des zweiten Summanden dankbar!


        
Bezug
Beweis von Klein-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Fr 12.11.2010
Autor: rainerS

Hallo!

> Hallo,
>  
> ich beschäftige mich gerade mit der Klein-Ungleichung für
> konvexe Funktionen angewandt auf Dichteoperatoren und kann
> mir leider den Beweis nicht ganz erklären.
>  
> Satz: Es sei [mm]f[/mm] eine konvexe [mm]C^1[/mm] Funktion mit geeigneten
> Definitionsbereich und [mm]\rho, \sigma[/mm] seinen zwei
> Dichteoperatoren [mm](\rho, \sigma[/mm] positiv,
> [mm]tr\rho=tr\sigma=1).[/mm]
>  Dann gilt
> [mm]tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)]\geq 0.[/mm]
>  
> Beweis: Zerlege [mm]\rho=\sum_n\lambda_nE_n,[/mm] wobei die
> [mm]\lambda_n[/mm] die Eigenwerte von [mm]\rho[/mm] sind und [mm]E_n[/mm]
> eindimensionale Projektionen auf die zugehörigen
> Eigenräume.
> Es seien [mm]{x_n}[/mm] und [mm]{y_m}[/mm] zwei vollständige
> Orthonormalsysteme, die aus den Eigenvektoren von [mm]\rho[/mm] bzw.
> [mm]\sigma[/mm] bestehen, d.h. [mm]\rho x_n=\lambda_nx_n[/mm] und [mm]\sigma y_m=\mu_my_m[/mm].
>  
> Dann gilt:
>  
> [mm]tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)] \notag \\[/mm]
> = [mm]\sum_n(f(\lambda_n)-\sum_m|\langle x_n,y_m\rangle|^2f(\mu_m)[/mm]
>  
>  [mm]-\sum_m(|\langle x_n,y_m\rangle|^2(\lambda_n-\mu_m)f^\prime(\mu_m)) \notag \\[/mm]
> = [mm]\sum_{n,m}|\langle x_n,y_m\rangle|^2(f(\lambda_n)-f(\mu_m)-(\lambda_n-\mu_m)f^\prime(\mu_m)) \notag.[/mm]
>  
> Der letzte Ausdruck ist positive, denn [mm]f[/mm] ist konvex.
>  
> ________________________________________________________
>  
> Das war der Beweis. Die Herangehensweise ist klar, meine
> Fragen beziehen sich auf die Gleichung. Es geht mir darum,
> die Zwischenschritte bei den beiden Umformungen
> auszuformulieren.
>  
> Der erste wäre wohl:
>  
> [mm]tr[f(\rho)-f(\sigma)-(\rho-\sigma)f^\prime(\sigma)][/mm]
> =  [mm]\sum_n(\langle x_n,f(\rho)x_n\rangle-\langle x_n,f(\sigma)x_n\rangle-\langle x_n, (\rho-\sigma)f^\prime(\sigma)x_n\rangle)[/mm]
>  
> =  [mm]\dots[/mm]
>
>
> Der erste Summand ist dann klar, man schreibt
> [mm]f(\rho)=\sum_nf(\lambda)E_n.[/mm] Wenn man die Summe auf [mm]x_n[/mm]
> anwendet, erhält man [mm]f(\lambda_n )x_n[/mm] was im Skalarprodukt
> mit [mm]x_n[/mm] dann einfach [mm]f(\lambda_n)[/mm] ergibt.
>  
> Der zweite und dritte Summand ist mir nicht so klar.
> Vermutlich schreibt man [mm]f(\sigma)=\sum_mf(\mu_m)E_m,[/mm] man
> betrachtet also [mm]\langle x_n,\sum_mf(\mu_m)E_m x_n\rangle.[/mm]
> Jetzt weis ich aber nicht, wie man den Ausdruck weiter
> umformt, damit am Ende [mm]\sum_m|\langle x_n,y_m\rangle|^2f(\mu_m)[/mm]
> raus kommt.

Da [mm] $(x_n)$ [/mm] und [mm] $(y_m)$ [/mm] vollständige ONSe sind, ist

  [mm] x_n = \summe_m \langle y_m\mid x_n\rangle y_m [/mm]

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de