www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis von Mengen
Beweis von Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Mengen: "Lösung"
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:20 Mi 10.11.2004
Autor: Ursus

Hi Leute!

Ich hab mal wieder ein Problem mit Beweise und zwar soll ich

a) A  [mm] \subseteq [/mm] B  [mm] \gdw [/mm] P(A)  [mm] \subseteq [/mm] P(B)
b) P(A)  [mm] \cap [/mm] P(B) =P (A  [mm] \cap [/mm] B) beweisen.

Ich kann mir die Beispiele schon vorstellen, ich weiß auch, dass sie stimmen aber mir fehlt wieder einmal die Idee WIE ich das beweisen kann.

Vielen Dank für eure Hilfe!
bis bald, mfg ursus

        
Bezug
Beweis von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mi 10.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo Ursus,

das ist doch ganz leicht, wenn du dir zunächst erst mal überlegst, welche Mengen in den einzelnen Potenzmengen enthalten sind.

Gib dir einfach vor, dass M Element von P(A) ist. Dann besitzt M nur Elemente aus A. Alle Elemente von A sind auch Elemente von B. Deshalb ist M eine Teilmenge von B.

Das was der Beweis des ersten Teils.

Teil b) musst du dir selbst überlegen. Insbesondere musst du, um Gleichheit zu zeigen, zwei 'Rechnungen' durchführen.

Hugo

Bezug
        
Bezug
Beweis von Mengen: Formales und Ergänzung
Status: (Antwort) fertig Status 
Datum: 19:15 Mi 10.11.2004
Autor: Marcel

Hallo,

ich schreibe dir die a) mal formal auf, denn dort wird ja eine Äquivalenz verlangt:
Zu zeigen:
$A [mm] \subseteq [/mm] B$ [mm] $\gdw$ $P(A)\subseteq [/mm] P(B)$

1. Richtung [mm] "$\Rightarrow$": [/mm]
Es gelte $A [mm] \subseteq [/mm] B$. Ist $X [mm] \in [/mm] P(A)$, so folgt [m]X \subseteq A \underbrace{\subseteq}_{wegen\;A \subseteq B} B[/m] und daher gilt: [m]X \subseteq B[/m] und damit auch $X [mm] \in [/mm] P(B)$.
Also gilt dann auch [mm] $P(A)\subseteq [/mm] P(B)$.

2. Richtung [mm] "$\Leftarrow$": [/mm]
Es gelte $P(A) [mm] \subseteq [/mm] P(B)$. D.h. aber nach "Definition Teilmenge":
[mm] $\forall [/mm] X [mm] \in [/mm] P(A)$ gilt: $X [mm] \in [/mm] P(B)$,
was nach Definition der Potenzmenge impliziert:
[mm] $(\star)$ [/mm] Ist $X$ irgendeine Teilmenge von $A$, so ist $X$ auch eine Teilmenge von $B$.
Ist nun $y [mm] \in [/mm] A$ irgendein Element von $A$, so ist [mm] $\{y\}\subseteq [/mm] A$ und daher auch [mm] $\{y\} \subseteq [/mm] B$ wegen [mm] $(\star)$. [/mm]
Also gilt [mm] $\forall [/mm] y [mm] \in [/mm] A$ auch $y [mm] \in [/mm] B$ und daher $A [mm] \subseteq [/mm] B$.

Zu der zweiten Aufgabe:
Zeige zunächst:
1.) [mm] $P(A)\cap [/mm] P(B) [mm] \subseteq [/mm] P(A [mm] \cap [/mm] B)$
Dann zeige:
2.) $P(A [mm] \cap [/mm] B) [mm] \subseteq P(A)\cap [/mm] P(B)$

Aus 1.) und 2.) folgt dann die Behauptung!

Liebe Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de