www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis von Regeln für (Ur)Bild
Beweis von Regeln für (Ur)Bild < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Regeln für (Ur)Bild: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:58 Mi 09.11.2005
Autor: moonylo

Hallo,

ich hänge an dieser Aufgabe fest:

Vorraussetzung: X,Y seien Mengen.  f: X -> Y ist eine Abbildung. Weiterhin ist A [mm] \subseteq \cal{P}(X). [/mm]

Z.z.: f (  [mm] \bigcap [/mm] M)  [mm] \subseteq \bigcap [/mm] f(M) f. a. M [mm] \in [/mm] A.

Ich habe verschiedene Sachen probiert und das hier kommt mir noch am nähesten dran vor:

Sei q [mm] \in [/mm] f (  [mm] \bigcap [/mm] M)

[mm] \Rightarrow [/mm] q [mm] \in \{ f(z) | z \in \bigcap M\} [/mm] mit M [mm] \in [/mm] A

[mm] \Rightarrow [/mm] q [mm] \in \{ f(z) | \forall M \in A: z \in M\} [/mm]

Nun komm ich nicht mehr weiter aber im Endeffekt müsste ich kommen auf:

[mm] \Rightarrow [/mm] q [mm] \in \{ f(M) | M \in A} [/mm]

Abgesehen davon, dass das ne sehr schöne Sache ist, die interessant ist, ist es echt verzwickt. Vielleicht liegts einfach daran, dass es sich zu logisch anhört.. naja, daran muss man sich wohl gewöhnen. Hat wer nen Tip für mich?

Ich hatte noch die Idee zu probieren, dass wenn die Definitionsmenge links in der Definitionsmenge rechts enthalten wär, dass dann auch folgt, dass die Bildmenge enthalten ist. Finde dafür aber keinen Ansatz.

Ein Beispiel dafür zu finden, dass es umgekehrt nicht enthalten ist, war nicht schwer.. aber auf diesen Gedankengang komm ich einfach nicht..

        
Bezug
Beweis von Regeln für (Ur)Bild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Mi 09.11.2005
Autor: moonylo

Ich hab nun einen Weg gefunden, die Frage ist nur noch, ob das so ausreicht:

Bis hierhier ist es ja einfach zu vereinfachen:

[mm] \gdw [/mm] q [mm] \in \{f(z)|z \in \bigcap M mit M \in A\} [/mm]

[mm] \gdw [/mm] q [mm] \in \{(z,y')|z \in M mit M \in A, y' \in Y: (z,y') \in f\} [/mm]

Da f eine Abbildung ist:

[mm] \Rightarrow [/mm] q [mm] \in \{(M,y'')|M \in A, y'' \in Y: (M,y'') \in f\} [/mm]

[gdw gilt hier nicht, nur für M = z.. oder f ist injektiv]

[mm] \gdw [/mm] q [mm] \in \bigcap [/mm] f(M) mit M [mm] \in [/mm] A.

Fehlt da was? ist da was ungenau? muss ich eventuell hinschreiben warum das mit der Abbildung darauf folgt?

Bezug
        
Bezug
Beweis von Regeln für (Ur)Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Do 10.11.2005
Autor: Stefan

Hallo!

Ich komme mit deiner Schreibweise nicht so ganz klar, aber auf jeden Fall lässt sich die Aussage wie folgt zeigen:

$y [mm] \in [/mm] f [mm] \left( \bigcap\limits_{M \in {\cal A}} M\right)$ [/mm]

[mm] $\Rightarrow \quad \exists [/mm] x [mm] \in \bigcap\limits_{M \in {\cal A}} M\, :\, [/mm] f(x)=y$

[mm] $\Rightarrow \quad \forall [/mm] M [mm] \in {\cal A}\, \exists [/mm] x [mm] \in M\, [/mm] : [mm] \, [/mm] f(x)=y$

[mm] $\Rightarrow \quad \forall [/mm] M [mm] \in {\cal A}\, [/mm] : [mm] \, [/mm] y [mm] \in [/mm] f(M)$

[mm] $\Rightarrow \quad [/mm] y [mm] \in \bigcap\limits_{M \in {\cal A}} [/mm] f(M)$.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de