www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis von Ungleichung
Beweis von Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Ungleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:05 Sa 12.11.2011
Autor: hubbel

Aufgabe
Zeigen Sie, dass für [mm] a,b\in(0,\infty) [/mm] und r,s [mm] \in\IQ, [/mm] r<s gilt:
(i) r>0 und a<b => [mm] a^r (ii) a>1 => [mm] a^r (iii)0<a<1 => [mm] a^r>a^s [/mm]

Zu (i) wurde uns gesagt, man könne [mm] r=\left \bruch{n}{m} \right [/mm] annehmen, wobei n [mm] \in\IZ [/mm] und m [mm] \in\IN: [/mm]

a<b=>a-b<0

[mm] r=\left \bruch{n}{m}=>\left \bruch{n}{m}>0 \left \bruch{n}{m}>a-b=>n>m(a-b) Aber irgendwie hilft mir das nicht weiter. Hat jemand eine Idee wie ich am Ende auf a^r
        
Bezug
Beweis von Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 12.11.2011
Autor: Blech

Hi,

$a<b$
[mm] $\Rightarrow ab [mm] $\Rightarrow a^2
Per Induktion kannst Du jetzt folgern [mm] $a^n
Jetzt drehst Du das um und zeigst

$a<b$
[mm] $\Rightarrow a^{\frac 1m} [/mm] < [mm] b^{\frac 1m}$ [/mm]


Aus beidem zusammen kannst Du dann auf beliebiges [mm] $\frac [/mm] nm = [mm] r\in\IQ$ [/mm] schließen.


ciao
Stefan

Bezug
                
Bezug
Beweis von Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Sa 12.11.2011
Autor: hubbel

Du meinst also, ich soll einmal einen Induktionsbeweis für [mm] a^n
Bezug
                        
Bezug
Beweis von Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Sa 12.11.2011
Autor: fred97


> Du meinst also, ich soll einmal einen Induktionsbeweis für
> [mm]a^n
> Sprich ich setze eben einmal n=1 und m=1 und n+1 und m+1?



Was heißt "eben einmal" ?

Mache 2 ordentliche Induktionsbeweise.


> Und wenn beides gilt, dann gilt auch [mm]a^r
> hab ich das richtig verstanden?

Nimm mal an, Du hast diese Beweise gemacht. Dann hast Du: [mm] a^n
Dann folgt auch [mm] (a^n)^{1/m}<(b^n)^{1/m} [/mm]


FRED


Bezug
                                
Bezug
Beweis von Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:33 Sa 12.11.2011
Autor: hubbel

Stimmt, die Begründung ist verständlich, nun weiß ich Bescheid bei der (i), danke.

Jetzt ist die Frage, wie ich bei der (ii) weitermache. Ich darf ja die Erkenntnis aus der (i) benutzen.

Aber [mm] a^r>1 [/mm] gilt ja nicht, da r=n/m und n auch negativ sein dürfte.

Wir wissen aber, dass r<s => n/m<s => n<sm. Da kann ich aber schlecht mit Induktion argumentieren. Wie könnte ich da herangehen?

Bezug
                                        
Bezug
Beweis von Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 So 13.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Beweis von Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 So 13.11.2011
Autor: hubbel

Also, habe das ganze jetzt noch bewiesen, zumindest die (ii) und zwar:

r<s => 0<s-r

a>1 => a^(s-r)>1 da 0<s-r

[mm] a^{s-r}=a^s/a^r [/mm] => [mm] a^s/a^r>1 [/mm] => [mm] a^r
Bei der (iii) hab ich aber ein Problem:

Wenn s>r gilt, dann folgt daraus, dass r−s<0.

Wenn ich das nun einsetze bei a<1 => a^(r−s)<1 => [mm] a^r/a^s<1 [/mm] => [mm] a^r
Was ja nicht stimmt. Wo ist mein Fehler?

Bezug
                                                
Bezug
Beweis von Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 So 13.11.2011
Autor: Blech


> a<1 => a^(r−s)<1

Setz mal für [mm] $a=\frac [/mm] 12$, r=1, s=2, dann siehst Du, daß das nicht stimmen kann.

ciao
Stefan

Bezug
                                                        
Bezug
Beweis von Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 13.11.2011
Autor: hubbel

Ja, du hast recht, das stimmt nicht, hättest du einen Tipp für mich, wie ich anfangen kann. Analog zur (ii) geht das ja anscheinend nicht.

Bezug
                                                                
Bezug
Beweis von Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 13.11.2011
Autor: Blech

Hi,

> Analog zur (ii) geht das ja anscheinend nicht.

doch tut's, nur Deine Ungleichung ist falsch. =)

ciao
Stefan

Bezug
                                                                        
Bezug
Beweis von Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 So 13.11.2011
Autor: hubbel

Habe jetzt die ganze Zeit schon rumprobiert und finde meinen Fehler nicht. Ich versuchs nochmal:

Es gilt ja 0<a<1. Somit ist a<1. Außerdem gilt r<s => s-r>0.

Ich glaube jetzt seh ichs, da für a gilt 0<a<1, dann gilt:

0<a^(s-r)<1 => [mm] a^s/a^r<1 [/mm] => [mm] a^s
Und was stimmt ja! So müsste es stimmen!

Bezug
                                                                                
Bezug
Beweis von Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 13.11.2011
Autor: Blech


> So müsste es stimmen!

Yep.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de