www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Beweis zur Differenzierbarkeit
Beweis zur Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zur Differenzierbarkeit: Fehler in derAufgabenstellung?
Status: (Frage) beantwortet Status 
Datum: 10:28 Di 22.01.2008
Autor: devilsdoormat

Aufgabe
Es sei [mm]I := (-1,1)[/mm] und [mm]f:I \to \IR[/mm]. Man zeige Gibt es Zahlen [mm]K>0[/mm] und [mm]\alpha > 1[/mm] mit [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha} [/mm] für alle [mm]x \in I[/mm], so ist f in 0 differenzierbar.

Hi,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für gewöhnlich stimmen diese Aussagen auf den Übungsblättern ja, die man beweisen soll. Deshlab wundert es mich gerade, dass ich irgendwie ein Gegenbeispiel gefunden habe.

Die Betragsfunktion [mm]abs(x)[/mm] ist ja bekannterweise nicht differenzierbar in 0. Definiert man sie nun auf dem Interval I, so findet man doch für alle [mm]x \in I\{0}[/mm] nach Eudoxos (ich glaube der war es) passende [mm]\alpha[/mm] und [mm]K[/mm], so dass [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm] gilt. Auch für x=0 gilt bei der Betragsfunktion offensichtlich die Voraussetzung... das ist doch aber ein Widerspruch zu der Aussage die man beweisen soll... habe ich da jetzt irgend einen Denkfehler gemacht, oder soll man gerade das zeigen?

Danke schon mal im voraus

        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Di 22.01.2008
Autor: angela.h.b.


> Es sei [mm]I := (-1,1)[/mm] und [mm]f:I \to \IR[/mm]. Man zeige Gibt es
> Zahlen [mm]K>0[/mm] und [mm]\alpha > 1[/mm] mit [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm]
> für alle [mm]x \in I[/mm], so ist f in 0 differenzierbar.

> Für gewöhnlich stimmen diese Aussagen auf den
> Übungsblättern ja, die man beweisen soll. Deshlab wundert
> es mich gerade, dass ich irgendwie ein Gegenbeispiel
> gefunden habe.

Hallo,

damit würde der Traum eines jeden Mathematikstudenten wahr...

Ich finde es gut, wie Du an die Aufgabe herangehst! Beispiele suchen, Behauptung teste, gucken ob es Gegenbeispiele gibt.


> Die Betragsfunktion [mm]abs(x)[/mm] ist ja bekannterweise nicht
> differenzierbar in 0. Definiert man sie nun auf dem
> Interval I, so findet man doch für alle [mm]x \in I \{0}[/mm] nach
> Eudoxos (ich glaube der war es) passende [mm]\alpha[/mm] und [mm]K[/mm], so
> dass [mm]\left| f(x)\right| \le K \left|x\right|^{\alpha}[/mm] gilt.

Die Voraussetzung Deiner Aufgabe ist anders:

Die Funktion f ist so, daß Du mit ein und demselben [mm] \alpha [/mm] und K auskommst, egal welche Stelle x Du gerade betrachtest. [mm] \alpha [/mm] und K sind hier fest und unabhängig v. x.

Gruß v. Angela




Bezug
                
Bezug
Beweis zur Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Di 22.01.2008
Autor: pelzig

für [mm] $\alpha [/mm] = K = 1$ ist doch aber [mm] $|abs(x)|=|x|\le 1*|x|^1 [/mm] = |x|$ trivialerweise erfüllt, sogar für alle [mm] $x\in\IR$... [/mm] (?)

Bezug
                        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Di 22.01.2008
Autor: angela.h.b.

Hallo,

[mm] \alpha [/mm] darf aber nicht =1 sein.

Gruß v. Angela

Bezug
                                
Bezug
Beweis zur Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 22.01.2008
Autor: devilsdoormat

Ja ok, die Aufgabenstellung habe ich tatsächlich verdreht. Aber dennoch. Man muss ja noch nicht einmal [mm]\alpha=1[/mm] wählen. Jedes [mm]\alpha<1[/mm] vergrößert doch sogar noch die Funktionswerte von [mm]abs(x)[/mm], da die Funktion ja nur auf [mm]I:=(-1,1)[/mm] definiert wurde. Wenn man jetzt ein [mm]K \ge 1[/mm] wählt hat man gar keinen Stress und die Bedingung ist für jedes [mm]x\inI[/mm] erfüllt... und das auch bei einem festen K und [mm]\alpha[/mm] wie ja gefordert wurde.

Hab ich da immer noch einen Fehler, der mir nicht auffällt?

Bezug
                                        
Bezug
Beweis zur Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 22.01.2008
Autor: angela.h.b.


> Ja ok, die Aufgabenstellung habe ich tatsächlich verdreht.
> Aber dennoch. Man muss ja noch nicht einmal [mm]\alpha=1[/mm]
> wählen. Jedes [mm]\alpha<1[/mm] vergrößert doch

Hallo,

gefordert ist a>1.

Gruß v. Angela

Bezug
                                                
Bezug
Beweis zur Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Di 22.01.2008
Autor: devilsdoormat

hmm, ok, lesen sollte man zumindest können...

ich bedanke mich schon mal so weit und versuche mich jetzt mal an der Aufgabe in der Form, in der sie wahrscheinlich auch Sinn macht...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de