www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Beweisaufgabe
Beweisaufgabe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 25.01.2014
Autor: nullahnung2217

Aufgabe
Seien n [mm] \in \IN_{0} [/mm] und [mm] T_{1},...,T_{n+1} \subseteq [/mm] {1,...,n}. Zeige: Es existiert ein k [mm] \in \IN [/mm] und paarweise verschiedene [mm] i_{1},...,i_{k} \in [/mm] {1,...,n+1} mit [mm] T_{i_{1}}\Delta...\Delta T_{i_{k}} [/mm] = [mm] \emptyset. [/mm]


Hallo alle zusammen,
bei dieser Aufgabe verstehe ich leider komplett nix und habe keinen Ansatz. Ich verstehe auch nicht genau, was [mm] \Delta [/mm] bedeutet oder wie ich an die Aufgabe rangehen kann.
Könnt ihr mir dabei helfen?

Danke!!!

        
Bezug
Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 25.01.2014
Autor: leduart

Hallo
um welches Teilgebiet geht es denn, was sind die T? irgendwelche Unterteilungen?
was Delta mit Pünktchen ist weiß ich auch nicht, üblicherweise werden [mm] \Delta [/mm] für Differenzen benutzt. z.B [mm] \|Delta_{ik}=x_k-x_i [/mm]
Ohne zusammenhang ist die aufgabe unklar. ist sie vielleicht eine Teilaufgabe. oder hast du sie unvollständig zitiert?
Gruß leduart

Bezug
                
Bezug
Beweisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 So 26.01.2014
Autor: nullahnung2217

Hallo,
also es handelt sich nicht um eine Teilaufgabe sondern um eine eigene Aufgabe ohne irgendwas davor.

Aber ich hab etwas im Script rescherschiert und
A [mm] \emptyset [/mm] B = [mm] (A\B) \emptyset (B\A) [/mm]

Wenn ich also mal n = 0 wähle, dann ist [mm] T_{1} \subseteq \emptyset. [/mm]
Damit die [mm] i_{1},...i_{k} [/mm] paarweise verschieden sind, muss ich ja k = 1 wählen.
Also hab ich nur [mm] T_{i_{1}} [/mm] = [mm] \emptyset, [/mm] was ja erfüllt ist.

Also habe ich es für n = 0 bewiesen.

Nun habe ich es aber auch mal für n=2 getestet und dabei ein Problem festgestellt.
Also ich hab [mm] T_{1}, T_{2}, T_{3} \subseteq [/mm] {1,2}.
Und [mm] i_{1},..,i_{k} \in [/mm] {1,2,3}.
Aber in der Aufgabe steht nirgends, dass [mm] T_{1} \not= T_{2} [/mm] gelten muss. d.h. doch die Aussage müsste auch gelten, wenn [mm] T_{1} [/mm] = [mm] T_{2} [/mm] = [mm] T_{3} [/mm] ist.
Und wenn ich diese mit [mm] \Delta [/mm] verbinde, erhalte ich niemals die leere Menge, wenn [mm] T_{1} [/mm] nicht die leere Menge ist.
Somit wäre die Aufgabe ja falsch und ich hab das Gegenteil bewiesen. Oder was meint ihr dazu?

Bezug
                        
Bezug
Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 So 26.01.2014
Autor: leduart

Hallo
weisst du denn jetz was die T sind, und was das [mm] \Delta [/mm] bedeutet, und immer nich aus welcher Vorlesung, und welchen Teil davon stammt die Aufgabe?
was die Symbole A [mm] \emptyset [/mm]  B = [mm] (A)\emptyset [/mm] (B) bedeuten soll weiss ich auch nicht? was sind dabei A oder (A)
Gru0 leduart

Bezug
                                
Bezug
Beweisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 26.01.2014
Autor: nullahnung2217

Entschuldigung, habe es wieso auch immer falsch geschrieben.
Also hier nochmal richtig:

A [mm] \Delta [/mm] B = (A \ B) [mm] \cup [/mm] (B \ A)

Also handelt es sich bei T um eine Menge und  [mm] T_{1} \Delta T_{2} [/mm] ist Vereinigung von Elementen, die nur in [mm] T_{1} [/mm] oder nur in [mm] T_{2} [/mm] enthalten sind.

Bezug
                                        
Bezug
Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Mo 27.01.2014
Autor: Sax

Hi,

die Behauptung ist äquivalent zu der folgenden:

Gegeben sei eine $ [mm] (n\times [/mm] n+1) $-Matrix, deren Einträge nur aus Nullen und Einsen bestehen. Dann gibt es eine Auswahl von k der n+1 Spalten in der Art, dass die so entstehende $ [mm] (n\times [/mm] k) $-Matrix in jeder Zeile eine geradzahlige Anzahl von Einsen hat.

Das ist eine Aufgabe aus der Kombinatorik, eventuell mit dem Satz von Ramsey zu lösen.

Gruß Sax

Bezug
                                        
Bezug
Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 04:15 Mo 27.01.2014
Autor: Sax

Hi,

es ist doch eine Aufgabe aus der linearen Algebra.

Die Spalten sind n-dimensionale Vektoren über dem Körper [mm] \IZ_2. [/mm] Natürlich sind n+1 Stück davon linear abhängig, aus ihnen lässt sich also der Nullvektor linear kombinieren. 1+1+...+1 = 0 gilt aber nur für eine gerade Anzahl von Einsen.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de