Beweise Aussagen ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:34 Mi 30.11.2011 | Autor: | Catman |
Aufgabe | Beweisen Sie für a,b,c,x,y,ai [mm] \inZ [/mm] mit i=1,...,n (n [mm] \in [/mm] N) und nicht alle ai = 0 und c ungleich 0.
a) ax+by=1 -> x,y teilerfremd
b) ggT (a,b) = ax + by --> ggT(x,y) = 1
c) ggT(c*a1,...,c*an) = |c| * ggT(a1,...an) |
Aufgabe a hab ich bewiesen indem ich angenommen habe es gäbe ein t>1, dass x und y teilen würde, dann würde auch t*(a*q1+b*q2)=1 gelten und da t>1 geht das nicht. Also müssen x und y teilerfremd sein.
Bei Aufgabe b komme ich nicht weiter, wäre für einen Ansatz sehr dankbar.
Bei Aufgabe c habe ich gedacht zu zeigen, dass d<=|c|*d2 ist und |c|d2<= d
Also d ist ggT(c*...) und d2 ist ggT(a1..)
Und das d>= |c| *d ist scheint mir logisch, weil es ja egal ist ob ich das c vorher oder nachher mit dem a multipliziere, bzw. genauso müsste es andersrum sein, aber ich hab keine Idee wie ich das mathematisch aufschreibe, bzw. beweise....
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:52 Do 01.12.2011 | Autor: | felixf |
Moin!
> Beweisen Sie für a,b,c,x,y,ai [mm]\inZ[/mm] mit i=1,...,n (n [mm]\in[/mm] N)
> und nicht alle ai = 0 und c ungleich 0.
>
> a) ax+by=1 -> x,y teilerfremd
> b) ggT (a,b) = ax + by --> ggT(x,y) = 1
> c) ggT(c*a1,...,c*an) = |c| * ggT(a1,...an)
>
> Aufgabe a hab ich bewiesen indem ich angenommen habe es
> gäbe ein t>1, dass x und y teilen würde, dann würde auch
> t*(a*q1+b*q2)=1 gelten und da t>1 geht das nicht. Also
> müssen x und y teilerfremd sein.
> Bei Aufgabe b komme ich nicht weiter, wäre für einen
> Ansatz sehr dankbar.
Nun, $ggT(a, b)$ ist ein Teiler sowohl von $a$ wie auch von $b$. Teile die ganze Gleichung durch $ggT(a, b)$ und benutze a).
> Bei Aufgabe c habe ich gedacht zu zeigen, dass d<=|c|*d2
> ist und |c|d2<= d
>
> Also d ist ggT(c*...) und d2 ist ggT(a1..)
>
> Und das d>= |c| *d ist scheint mir logisch, weil es ja egal
> ist ob ich das c vorher oder nachher mit dem a
> multipliziere, bzw. genauso müsste es andersrum sein, aber
> ich hab keine Idee wie ich das mathematisch aufschreibe,
> bzw. beweise....
Geh doch wie folgt vor: ist [mm] $d_2$ [/mm] ein ggT von [mm] $a_1, \dots, a_n$, [/mm] so gilt $d [mm] \mid a_i$, [/mm] und somit auch $|c| [mm] d_2 \mid [/mm] c [mm] a_i$ [/mm] fuer alle $i$. Da $d$ ein ggT von $c [mm] a_1, \dots, [/mm] c [mm] a_n$ [/mm] ist und $|c| [mm] d_2$ [/mm] ebenfalls ein Teiler von $c [mm] a_1, \dots, [/mm] c [mm] a_n$ [/mm] ist, folgt ...
Fuer die andere Richtung argumentiere zuerst, dass $c$ ein Teiler von $d$ sein muss. Dann folgt, dass [mm] $\frac{d}{|c|}$ [/mm] ein gemeinsamer Teiler von [mm] $a_1, \dots, a_n$ [/mm] ist, womit eine Beziehung zwischen [mm] $\frac{d}{|c|}$ [/mm] und [mm] $d_2 [/mm] = [mm] ggT(a_1, \dots, a_n)$ [/mm] folgt.
LG Felix
|
|
|
|