www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beweise Cos(5\alpha)
Beweise Cos(5\alpha) < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise Cos(5\alpha): Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 16:58 Mo 04.10.2010
Autor: Marius6d

Aufgabe
Rechnen Sie nach, dass gilt:

[mm] cos(5\alpha) [/mm] = [mm] cos^5(\alpha) [/mm] - [mm] 10cos^3(\alpha)*sin^2(\alpha) [/mm] + [mm] 5*cos(\alpha)*sin^4(\alpha) [/mm]

Wir haben das heute als Aufgabe zum Thema komplexe Zahlen bekommen, deshalb habe ich es einmal hierhin verschoben. Ja meine Frage ist wie ich hier vorgehen muss, damit ich dieses ganzen sinus und cosinus wegstreichen kann. Das die Gleichung stimmt habe ich bereits mit verschiedenen Winkeln geprüft, das ist klar, aber ich denke das dies wohl kaum die Lösung sein kann.

        
Bezug
Beweise Cos(5\alpha): Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mo 04.10.2010
Autor: Karl_Pech

Hallo Marius6d,


Da ihr als Thema "komplexe Zahlen" habt, sollten die []Darstellungen von Sinus und Kosinus im Komplexen hier nützlich sein.



Viele Grüße
Karl




Bezug
        
Bezug
Beweise Cos(5\alpha): Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mo 04.10.2010
Autor: abakus


> Rechnen Sie nach, dass gilt:
>
> [mm]cos(5\alpha)[/mm] = [mm]cos^5(\alpha)[/mm] -
> [mm]10cos^3(\alpha)*sin^2(\alpha)[/mm] +
> [mm]5*cos(\alpha)*sin^4(\alpha)[/mm]
>  Wir haben das heute als Aufgabe zum Thema komplexe Zahlen
> bekommen, deshalb habe ich es einmal hierhin verschoben. Ja
> meine Frage ist wie ich hier vorgehen muss, damit ich
> dieses ganzen sinus und cosinus wegstreichen kann. Das die
> Gleichung stimmt habe ich bereits mit verschiedenen Winkeln
> geprüft, das ist klar, aber ich denke das dies wohl kaum
> die Lösung sein kann.

Hallo,
setze [mm] z=cos\phi [/mm] + i* [mm] sin\phi. [/mm]
Berechne [mm] z^5 [/mm] auf zwei verschiedenen Wegen:
1) Rechne [mm] (cos\phi [/mm] + i* [mm] sin\phi)^5 [/mm] mit dem Pascalschen Dreieck aus.
2) Nutze [mm] z^n=r^n*( [/mm] cos [mm] n*\phi [/mm] + i*sin [mm] n*\phi [/mm] )

Vergleiche dann beide Ergebnisse (Realteil=Realteil und Imaginärteil = Imaginärteil).
Dabei fällt auch gleich noch eine Formel für sin [mm] 5\phi [/mm] mit ab.
Gruß Abakus


Bezug
                
Bezug
Beweise Cos(5\alpha): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 09.10.2010
Autor: Marius6d

Ok, also ich habe das mal mit dem pascalschen Dreieck probiert, bin auf folgendes gekommen:

[mm] \summe_{i=0}^{5} \vektor{5 \\ i} cos\alpha^{5-i}*sin\alpha^{i} [/mm]

= [mm] \vektor{5 \\ 0}cos\alpha^5*isin\alpha^0 [/mm] + [mm] \vektor{5 \\ 1}cos\alpha^4*isin\alpha^1 [/mm] + [mm] \vektor{5 \\ 2}cos\alpha^3*isin\alpha^2 [/mm] + [mm] \vektor{5 \\ 3}cos\alpha^2*isin\alpha^3 [/mm] + [mm] \vektor{5 \\ 4}cos\alpha^1*isin\alpha^4 [/mm] + [mm] \vektor{5 \\ 5}cos\alpha^0*isin\alpha^5 [/mm]

= [mm] cos\alpha^5 [/mm] + [mm] 5(cos\alpha^4*isin\alpha) [/mm] + [mm] 10(cos\alpha^3*isin\alpha^2) [/mm] + [mm] 10(cos\alpha^2*isin\alpha^3) [/mm] + [mm] 5(cos\alpha*isin\alpha^4) +isin\alpha^5 [/mm]

wie muss ich jetzt weiterfahren? bzw. wie ist das mit dem vergleichen genau gemeint?

Bezug
                        
Bezug
Beweise Cos(5\alpha): Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Sa 09.10.2010
Autor: reverend

Hallo Marius,

da fehlt noch etwas Entscheidendes in Deiner Summe, nämlich die Potenzen von i. Auch das i wird ja mit potenziert!

Dabei ist [mm] \forall k\in\IZ [/mm] ja [mm] i^{4k}=1,\ i^{4k+1}=i,\ i^{4k+2}=-1,\ i^{4k+3}=-i. [/mm]

Das Vergleichen zielt auf den Vergleich von Re(z) auf beiden Seiten bzw. Im(z) auf beiden Seiten.

Grüße
reverend


Bezug
                                
Bezug
Beweise Cos(5\alpha): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Sa 09.10.2010
Autor: Marius6d

ah genau vielen dank, das hab ich vergessen, so gehts natuerlich schoen auf!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de