Beweise die Gleichung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:29 Fr 17.04.2009 | Autor: | andreji |
Aufgabe | Man beweise
[mm] cos(nx)=\summe_{k=0}^{n/2}(-1)^{k}\vektor{n\\ n-2k}cos^{n-2k}xsin^{2k}x
[/mm]
Tipp: exp(niz)=(exp [mm] iz)^{n}. [/mm] (Warum stimmt das eigentlich?) |
Hallo. Ich komme bei der folgenden Aufgabe nicht weiter, weil mir irgendwie der Ansatz fehlt. Wird die Gleichung mit Hilfe der vollständigen Induktion bewiesen? Leider hilft mir der Tipp nicht weiter, sondern irritiert mich eher ein wenig. Kann mir jemand eventuell hier bitte weiterhelfen?
Mit freundlichem Gruß
Andrej
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:40 Fr 17.04.2009 | Autor: | leduart |
Hallo
kennst du nicht die komplexe Darst. von sin und cos?
sonst sieh die nach.
dass [mm] (a^b)^n=a^{b*n} [/mm] ist solltest du wissen!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:05 Fr 17.04.2009 | Autor: | andreji |
Hallo leduart! Also erstmal vielen Dank für deine Antwort.
Meinst du mit komplexer Darstellung [mm] e^{ix}=cosx+i*sinx [/mm] ?
Wie kann man das hier verwenden?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:07 Fr 17.04.2009 | Autor: | Marcel |
Hallo,
> Hallo leduart! Also erstmal vielen Dank für deine Antwort.
>
> Meinst du mit komplexer Darstellung [mm]e^{ix}=cosx+i*sinx[/mm] ?
>
> Wie kann man das hier verwenden?
naja, Du hattest gefragt, wieso [mm] $\exp(n*i*z)=\big(\exp(i*z)\big)^n$ [/mm] gilt. Ich weiß nicht, ob Du es erkannt hast, aber Robert hat Dir es hier erklärt:
Wegen [mm] $n*(i*z)=\sum_{k=1}^n [/mm] i*z$ gilt
[mm] $$\exp(n*i*z)=\exp\Big(\sum_{k=1}^n i*z\Big)\,,$$ [/mm]
und nun kannst Du die von Robert erwähnte Funktionalgleichung
[mm] $$\exp(v+w)=\exp(v)*\exp(w)\;\;\;(v,w \in \IC)$$
[/mm]
[mm] $n\,$-Mal [/mm] auf [mm] $\exp\Big(\sum_{k=1}^n i*z\Big)$ [/mm] anwenden. (Und dann die Definition [mm] $a^n:=\produkt_{k=1}^n [/mm] a$ ($n [mm] \in \IN_0$) [/mm] benutzen.)
Je nachdem, welche Definition von [mm] $a^b\,$ [/mm] Euch in der Vorlesung zugrundeliegt, kann man das ganze vielleicht auch anders machen, mit der Definition des komplexen Sinus/Kosinus und den Additionstheoremen (vermute ich jedenfalls mal; oder man kann vll. auch mit der Reihendarstellung der Exponentialfunktion arbeiten und und und; da gibt's sicher viele Wege, die zum Ziel führen) oder, was Dir ja reicht, mit der Eulerschen Identität und dann den Additionstheoremen für die auf [mm] $\IR$ [/mm] definierten Funktionen Sinus- und Kosinus (so ginge es jedenfalls sicher für $z=x [mm] \in \IR$; [/mm] wie gesagt, bei Deiner Aufgabe oben scheint das ja zu genügen...)... Aber Roberts Vorschlag ist sicher der elegantere, und passt meist auch zu dem Aufbau, wie die Exponentialfunktion, Terme wie [mm] $a^b$ [/mm] etc. typischerweise in der Analysis eingeführt werden. Das Wort "typischerweise" ist dabei mit Vorsicht zu genießen bzw. steht unter Vorbehalt so da, weil es halt eigentlich meiner Erfahrung nach 'typsicherweise' meint
P.S.:
Leduarts Tipp mit der Darstellung vom Sinus- und Kosinus will ich so mal nicht ganz stehenlassen, sondern ich frage einfach mal:
Wie wurden bei Euch der Sinus und der Kosinus definiert?
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:18 Fr 17.04.2009 | Autor: | pelzig |
> dass [mm](a^b)^n=a^{b*n}[/mm] ist solltest du wissen!
Also ich finde diese Erklärung ziemlich sinnlos, denn wie ist denn [mm] a^b [/mm] definiert?
Der wahre Grund ist die Funktionalgleichung [mm] $\exp(x+y)=\exp(x)\exp(y)$, [/mm] die man einfach ganz Formal aus der Definition der Exponentialfunktion, dem Binomischen Lehrsatz und dem Cauchyprodukt für Reihen beweist.
Gruß, Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:44 Fr 17.04.2009 | Autor: | Marcel |
Hallo Robert,
> > dass [mm](a^b)^n=a^{b*n}[/mm] ist solltest du wissen!
> Also ich finde diese Erklärung ziemlich sinnlos, denn wie
> ist denn [mm]a^b[/mm] definiert?
> Der wahre Grund ist die Funktionalgleichung
> [mm]\exp(x+y)=\exp(x)\exp(y)[/mm], die man einfach ganz Formal aus
> der Definition der Exponentialfunktion, dem Binomischen
> Lehrsatz und dem Cauchyprodukt für Reihen beweist.
ich finde es nicht ganz sinnlos. Typischerweise wird in der Analysis-Vorlesung [mm] $a^b$ [/mm] eben über [mm] $\exp(b*\ln(a))$ [/mm] (für [mm] $a\, [/mm] > 0$) definiert, aber das ist nicht zwingend. Man kann auch mit rationalen Exponenten [mm] $a^b$ [/mm] erklären und dann mit Stetigkeitsargumenten oder Cauchyfolgen arbeiten, um den Ausdruck [mm] $a^b$ [/mm] auch für $b [mm] \in \IR$ [/mm] zu definieren.
Sicherlich ist das ein Weg, der etwas mühevoller ist oder erscheint, aber diesen Weg kann man durchaus gehen...
Es ist immer ein bisschen die Frage, wie die entsprechend zugrundeliegende Theorie aufgebaut ist.
Gruß,
Marcel
|
|
|
|