www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Beweise im SNS
Beweise im SNS < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise im SNS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:36 Do 08.11.2007
Autor: Quadral

Aufgabe
Beweise folgende Behauptung im System des natürlichen Schließens:
p -> (q ^ r) I- (q -> s) -> (p -> s)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebe Leute,

ich hoffe, ihr könnt mir bei meiner Aufgabe helfen. Mir ist nicht klar, wie ich eine Variable einführe, die in der Prämisse nicht vorkommt. Einführung einer Disjunktion oder einer Implikation scheinen mir hier nicht zu helfen, denn s ist ja das Konsequenz der Implikation. Irgendwelche Vorschläge?

Bis jetzt bin ich hier:

1. p -> (q ^ r)       Annahme
2. p                  z. Annahmen
3. q ^ r              B -> 1,2
4. q                  B ^ 3
(5. r                 B ^ 3)

... und dann komme ich nicht so richtig weiter. Hilfe! Wie komme ich günstig an s?


        
Bezug
Beweise im SNS: Lösungsvorschlag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Do 08.11.2007
Autor: Quadral

Mir ist jetzt eine Lösung zu dem Problem eingefallen. Kann mir jemand sagen, ob das so stimmt?

1. p -> (q ^ r)          Annahme
2. q -> s                zusätzliche Annahme
3. p                     zusätzliche Annahme
4. q ^ r                 B -> 1, 3
5. q                     B ^ 4
6. s                     B -> 2,5
7. p -> s                E -> 2,5
8. (q -> s) -> (p -> s)  E -> 2,7

(Ich hab das hier mal nicht als extra Frageartikel gekennzeichnet. Ich hoffe, das ist richtig. Ich kenne mich hier im Forum noch nicht so aus...)


Bezug
        
Bezug
Beweise im SNS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:13 Sa 10.11.2007
Autor: Quadral

Aufgabe
Beweise durch Ableitung im System des natürlichen Schließens!

[mm] (\neg(p \to [/mm] q)) [mm] \to [/mm] (p [mm] \wedge \neg [/mm] q)

Hallo nochmal!

Ich bin auf ein weiteres Problem gestoßen und hoffe, obwohl noch niemand auf meine andere Frage reagiert hat, dass mir doch noch jemand helfen kann. Ich komme bei dem Beweis einfach nicht weiter. Ich weiß, dass [mm] (\neg(p \to [/mm] q)) äquivalent zu (p [mm] \wedge \neg [/mm] q) ist, und ((p [mm] \wedge \neg [/mm] q) [mm] \to (\neg(p \to [/mm] q)) kann ich auch beweisen, aber die Gegenrichtung bekomme ich einfach nicht auf die Reihe. Ich bin so weit:

1. [mm] \neg(p \to [/mm] q)            Annahme
2. [mm] \neg(p \wedge \neg [/mm] q)           zusätzl. Annahme
3. [mm] \neg [/mm] p [mm] \vee \neg \neg [/mm] q          de Morgansches Gesetz (2)
4. [mm] \neg [/mm] p [mm] \vee [/mm] q            äquivalente Umformung (3)

... und jetzt??????

Bezug
                
Bezug
Beweise im SNS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Mo 12.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweise im SNS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 12.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de