www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweise von Ungleichungen in R
Beweise von Ungleichungen in R < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise von Ungleichungen in R: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:43 Sa 19.11.2005
Autor: Faust

Hallo,
ich habe hier zwei Aufgaben, wo ich bitte etwas Hilfe zu bräuchte:

seien a,b [mm] \in \IR [/mm] . Jetzt soll man follgendes zeigen:

1.)  0 [mm] \le [/mm] a < b  [mm] \Rightarrow \forall [/mm] n [mm] \in \IN [/mm] : 0  [mm] \le a^{n} [/mm] < [mm] b^{n} [/mm]
2.)  a < b   [mm] \Rightarrow \forall [/mm] n [mm] \in \IN_{0} [/mm] : [mm] a^{2n+1} [/mm] < [mm] b^{2n+1} [/mm]


Zur ersten Aufgabe habe ich mir dann schon follgendes überlegt:
man könnte ja sagen c*b=a, mit 0 [mm] \le [/mm] c [mm] \le [/mm] 1 also
0 [mm] \le [/mm] b*c < b
und wenn 0 [mm] \le [/mm] c [mm] \le [/mm] 1 ist, dann ist auch 0 [mm] \le c^{n-1} \le [/mm] 1.
somit kann man die Ungleichung zunächst mit [mm] b^{n-1} [/mm] multiplizieren:

0  [mm] \le c*b^{n} [/mm] < [mm] b^{n} [/mm]
und dann [mm] c*b^{n} [/mm] noch mit [mm] c^{n-1}, [/mm] denn da [mm] c^{n-1} \le [/mm] 1 ist, ändert es an der Ungleichnung ja nichts.
also ist:
0  [mm] \le c^{n}*b^{n} [/mm] < [mm] b^{n} [/mm]
0  [mm] \le (c*b)^{n} [/mm] < [mm] b^{n} [/mm]
0  [mm] \le a^{n} [/mm] < [mm] b^{n} [/mm]

oder???
kann man das so machen???
und ist es ein richtiger Beweis???


Zu der zweiten Aufgabe, habe ich leider noch keinen Lösungsansatz, da ich glaube, dass man das Verfahren das ich bei der ersten Aufgabe angewendet habe nicht benutzen kann, da man sonst ein Problem mit den Vorzeichen bekommt, oder?

Es wäre toll wenn mir da jemand bei helfen könnte!!!
Danke im Voraus
lg Faust


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweise von Ungleichungen in R: vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 19.11.2005
Autor: Loddar

Hallo Faust,

[willkommenmr] !!


Ich kann keinen Fehler in Deiner Argumentation finden [ok] .

Vielleicht nochmals betonen, dass [mm] $\red{0 \ \le} [/mm] \ \ [mm] c^{n-1} [/mm] \ [mm] \le [/mm] \ 1$ , da wir ja ein Ungleichung mit diesem Term multiplizieren (und bei Multiplikation mit negativen Zahlen dreht sich das Ungleichheitszeichen um).


Ich selber hätte den Nachweis mittels vollständiger Induktion geführt. Damit kommst Du auch bei der zweiten Teilaufgabe weiter.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de