www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweisen der Rechenregel
Beweisen der Rechenregel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen der Rechenregel: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 20:07 Sa 22.10.2005
Autor: MustiTR

Hi Leute erst einmal coole seite.
Habe neu mit informatik studium angefangen und meine erste Übungsaufgabe bekommen:

a) Es seien a,b,c,d Elemente eines beliebigen Körpers und es gelte b [mm] \not= [/mm] 0 und d [mm] \not= [/mm] 0.
Beweisen Sie die Rechenregel [mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d} [/mm] = [mm] \bruch{ad + bc}{bd}. [/mm] Erinnerung [mm] \bruch{a}{b} [/mm] ist definiert als a * ( [mm] b^{-1}). [/mm]

b) Beweisen Sie: Für alle Elemente x,y eines angeordneten Körpers (mit x  [mm] \not= [/mm] 0, y  [mm] \not= [/mm] 0, und x + y  [mm] \not= [/mm] 0) ist die beliebte "Rechenregel"  [mm] \bruch{1}{x+y} [/mm] =  [mm] \bruch{1}{x}+ \bruch{1}{y} [/mm] falsch.

Hinweis:Zeigen sie zunächst, dass die Gleichung xy =  [mm] (x+y)^{2} [/mm] keine Lösung (x,y) mit x [mm] \not= [/mm] 0 besitzt. Hierzu das Quadrat mittels Binomischer Formel umschreiben und xy  [mm] \ge [/mm] 0 beachten (warum gild das ?).

Danke für die Hilfe. Bitte nachvollziehbar aufschreiben damit ich es das nächste mal allein hinbekommen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen der Rechenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 22.10.2005
Autor: SEcki


> a) Es seien a,b,c,d Elemente eines beliebigen Körpers und
> es gelte b [mm]\not=[/mm] 0 und d [mm]\not=[/mm] 0.
> Beweisen Sie die Rechenregel [mm]\bruch{a}{b}[/mm] + [mm]\bruch{c}{d}[/mm] =
> [mm]\bruch{ad + bc}{bd}.[/mm] Erinnerung [mm]\bruch{a}{b}[/mm] ist definiert
> als a * ( [mm]b^{-1}).[/mm]

Wo ist das Problem? Du fügst geschickt Einser ein, und formst dann weiter um.

> b) Beweisen Sie: Für alle Elemente x,y eines angeordneten
> Körpers (mit x  [mm]\not=[/mm] 0, y  [mm]\not=[/mm] 0, und x + y  [mm]\not=[/mm] 0)
> ist die beliebte "Rechenregel"  [mm]\bruch{1}{x+y}[/mm] =  
> [mm]\bruch{1}{x}+ \bruch{1}{y}[/mm] falsch.

> Hinweis:Zeigen sie zunächst, dass die Gleichung xy =  
> [mm](x+y)^{2}[/mm] keine Lösung (x,y) mit x [mm]\not=[/mm] 0 besitzt. Hierzu
> das Quadrat mittels Binomischer Formel umschreiben und xy  
> [mm]\ge[/mm] 0 beachten (warum gild das ?).

Was ist das Problem am Hinweis? Folge him doch einfach mal - znd benutze [m]x^2=0\gdw x=0[/m]. Dann zerzeilst du rechts den Term [m]2xy[/m] und teilst die Summe durch [m]xy(x+y)[/m].

> Danke für die Hilfe. Bitte nachvollziehbar aufschreiben
> damit ich es das nächste mal allein hinbekommen.

Du schreibst ja nichts über deine Lösungsansätze/Probleme bei der Lösung etc pp. Also probier das hier nochmal - die sind wirklich beide sehr einfach.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de