www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Beweisproblem
Beweisproblem < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:44 So 17.10.2010
Autor: Lorence

Guten Abend,

Es geht um folgendes Buch: Roger B. Nelson, an introduction to Copulas, S. 80, aber das nur am Rande:


Theorem 3.2.6

[mm] \alpha,\beta [/mm] seien Funktionen von I=[0,1] nach R, mit [mm] \alpha(0)=\alpha(1)=\beta(0)=\beta(1)=0. [/mm] C sei eine Funktion der Gestalt: [mm] C(u,v)=u*v+u*(1-u)*[\alpha(v)*(1-u)+\beta(v)*u], [/mm]  dann ist C eine Copula genau dann wenn:

[mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]

für [mm] u_{1}

der Beweis dieses Theorems habe ich verstanden, jetzt kommt der Teil den ich nicht verstehe:



Lemma 3.2.7 Seien [mm] \alpha,\beta [/mm] und C wie oben, dann ist C eine Copula genau dann wenn:

1. [mm] \alpha(v),\beta(v) [/mm] sind absolut stetig
2. [mm] 1+\alpha'(v)*(1-4u+3u^2)+\beta'(v)*(2u-3u^2)\ge0 [/mm]


Also im gesamten muss ich jetzt folgendes Zeigen:

[mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]
[mm] \gdw [/mm]
1. [mm] \alpha(v),\beta(v) [/mm] sind absolut stetig
2. [mm] 1+\alpha'(v)*(1-4u+3u^2)+\beta'(v)*(2u-3u^2)\ge0 [/mm]


Zum Beweis:

[mm] \Rightarrow [/mm] aus [mm] [(1-u_{1})^2+(1-u_{2})^2+u_{1}*u_{2}-1]*\bruch{\alpha(v_{2})-\alpha(v_{1})}{v_{2}-v_{1}}-[u_{1}^2+u_{2}^2)+(1-u_{1})*(1-u_{2})-1]*\bruch{\beta(v_{2})-\beta(v_{1})}{v_{2}-v_{1}}\ge-1 [/mm]

folgt ja recht schnell für u1=u2=u und [mm] \limes_{v_{2}\rightarrow\(v_{1}} \Rightarrow 1+\alpha'(v)*(1-4u+3u^2)+\beta'(v)*(2u-3u^2)\ge0 [/mm]  

aber die Rückrichtung bereitet mir große Kopfschmerzen, ich brauche den Mittelwertsatz und wie man von u wieder auf [mm] u_{1},u_{2} [/mm] kommt.

Es handelt sich um ein rein analytisches Problem, es wird keine Stochastik benötigt (vermute ich).


Hat jemand eine Idee?

Danke im Vorraus


        
Bezug
Beweisproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 So 17.10.2010
Autor: Gonozal_IX

Warum postest du ein und dieselbe Frage mehrmals ins Forum?

Mehrmaliges Posten führt eher dazu, dass antwortwillige recht angenervt sind und deine Frage daher gepflegt ignorieren.....

MFG,
Gono.

Bezug
                
Bezug
Beweisproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 So 17.10.2010
Autor: Lorence

Ich hatte mir erhofft, dass sich vielleicht ein Stochasticker, angesprochen fühlt, wenn ich die Frage in den Stochastikthread schreibe. Es ist ja so, dass die Frage sowohl in das Anna 2 als auch in Stochastikforum passt.

Ich wollte keinen verärgern.

Sorry

Gruß Lorence

Bezug
        
Bezug
Beweisproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 19.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de