www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Beweisverfahren - Induktion
Beweisverfahren - Induktion < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisverfahren - Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:28 Sa 27.11.2004
Autor: anni-1986

hi, ich habe in der Schule eine aufgabe erhalten, die ich nicht lösen kann. könnt ihr mir weiterhelfen? die aufgabe soll mit dem beweisverfahren induktion gelöst werden.

Aufgabe:
Die Multiplikation zweier ungerader Zahlen a,b (Natürliche Zahlen) ergibt immer eine ungerade Zahl.

Danke anni

        
Bezug
Beweisverfahren - Induktion: Idee und Frage an die andern
Status: (Antwort) fertig Status 
Datum: 20:12 Sa 27.11.2004
Autor: cremchen


Halli hallo!

> hi, ich habe in der Schule eine aufgabe erhalten, die ich
> nicht lösen kann. könnt ihr mir weiterhelfen? die aufgabe
> soll mit dem beweisverfahren induktion gelöst werden.
>  
> Aufgabe:
>  Die Multiplikation zweier ungerader Zahlen a,b (Natürliche
> Zahlen) ergibt immer eine ungerade Zahl.

Also ich habe überlegt wie man an diese Aufgabe mittels Induktion herangehen kann!
Ich habs mir folgendermaßen überlegt:
Sei b eine ungerade Zahl, d.h. sie hat die Gestalt b=2t+1
Induktionsanfang ist ja klar:
Für 1 gilt: 1*b=ungerade
Induktionsvoraussetzung ist nun: für ein a=2n+1 gilt:
a*b=(2n+1)*(2t+1)=4nt+2t+2n+1 ist ungerade
Induktionsbehauptung:
(a+2)*b ist wieder ungerade
Es gilt nun
(a+2)*b=(2n+1+2)*b=(2*(n+1)+1)*(2t+1)=4nt+2n+2t+1+4t+2
=4nt+6t+2n+3
Nun könntest du auf zwei Arten argumentieren:
1) das Produkt (a+2)*b ist offensichtlich ungerade, da 4nt+6t+2n gerade ist, und 3 ungerade.
2) du weißt dass 4nt+2t+2n+1 ungerade ist aus der Induktionsvoraussetzung. Bleibt 4t+2 übrig, dass zu a*b addiert werden muß um (a+2)*b zu erhalten. das ist wiederum gerade, und ungerade+gerade=ungerade.

Ich würd die zweite Argumentation bevorzugen, da sie sich auf die Induktionsvoraussetzung bezieht!

Ich frage mich nur, warum man diesen umständlichen Weg gehen muß.
Kann man nicht einfach zwei ungerade Zahlen multiplizieren?
(2n+1)*(2m+1)=2mn+2m+2n+1 ist ja ungerade egal welche Zahlen man für n und m nimmt!

Also wenn mir das jemand beantworten könnte wär das natürlich cool!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Beweisverfahren - Induktion: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 28.11.2004
Autor: JanSu

Ich vermute wirklich, dass man den einfachen Weg hier nur nicht nimmt, weil das Beweisverfahren Induktion geübt werden soll.

Meiner Ansicht nach spricht nichts gegen den direkten Beweis. ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de