Bewertungsverbund < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein Unternehmen kann ein neues Projekt mit einem erwarteten Gewinn von 20 GE und einer isolierten Standardabweichung des Gewinns von 35 GE durchführen. Die Überschüsse des neuen Projekts sind völlig unkorreliert mit denjenigen des bisherigen Programms.
Für dieses Ausgangsprogramm werden alternativ zwei Ausgangssituationen betrachtet: In Situation 1 hat das bisherige Programm einen Gewinnerwartungswert von 180 GE und eine Standardabweichung des Gewinns von 50 GE. In Situation 2 beträgt dagegen der Gewinnerwartungswert 220 GE bei gegebener Standardabweichung von 50 GE.
a) Angenommen, das Unternehmen maximiert folgende Nutzenfunktion:
[mm] U(E[G];\sigma(G))=E[G]-0,05\sigma(G) [/mm] ->>G ist Zufallsvariable
Hängt jetzt die Vorteilhaftigkeit des neuen Projekts von der Ausgangssituation ab?
b)Gehen Sie jetzt davon aus, dass das Unternehmen den Erwartungsnutzen maximiert, wobei eine quadratische Nutzenfunktion der folgenden Art zur Anwendung kommt:
U(G)=5G - [mm] 0,001G^{2}
[/mm]
Wie hängt bei dieser Entscheidungsregel die Vorteilhaftigkeit des neuen Projekts von der Ausgangssituation ab? (Hinweis: Formulieren Sie zunächst den Erwartungsnutzen als Funktion des Gewinnerwartungswertes und der Standardabweichung.) |
Hallo,
hier ist wieder der Moe und er hat wieder mal eine Aufgabe im Gepäck, die ihm Kopfzerbrechen bereitet. Ich habe zwar eine Lösung dafür, aber wie man von der Ausgangsstellung dahinkommt, ist mir ein Rätsel. Ich bin einfach nicht so fit mit den Erwartungswerten und Standardabweichungen :-( Könnte mir das bitte jemand zeigen?
es grüßt freundlich der Moe
Lösung a)
[mm] \sigma(G_{a} [/mm] + [mm] G_{n})=\wurzel[2]{\sigma^{2}(G_{a})+\sigma^{2}(G_{n})} \not= \sigma(G_{a})+\sigma(G_{n})
[/mm]
Zusätzliche Standardabweichung: 11,033
b) Erwartungsnutzen
[mm] E[U(G)]=5E[G]-0,001(E[G]^{2}+\sigma^{2}(G))
[/mm]
Varianz:
[mm] \sigma^{2}(G_{a}+G_{n})= \sigma^{2}(G_{a}) +\sigma^{2}(G_{n})
[/mm]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Fr 27.02.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|