www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Beziehung zwischen Det.
Beziehung zwischen Det. < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehung zwischen Det.: Idee
Status: (Frage) beantwortet Status 
Datum: 19:54 So 30.10.2011
Autor: kalifat

Aufgabe
Sei [mm] A=\pmat{ B & C \\ 0 & D} [/mm] eine [mm] n\times{n} [/mm] Matrix, wobei B eine [mm] k\times{k} [/mm] Matrix ist, D eine [mm] (n-k)\times(n-k)-Matrix [/mm] und 0 ausschließlich Nullen enthält. Zeige: detA=(detB)(detD)

Mit der Leibnizformel kann man dieses Beispiel bestimmt lösen, ich würde jedoch gerne wissen ob es nicht einen eleganteren und schnelleren Weg gibt, ohne Induktion.

        
Bezug
Beziehung zwischen Det.: Gauß
Status: (Antwort) fertig Status 
Datum: 21:10 So 30.10.2011
Autor: Schadowmaster

Also einen kompletten Beweis würde ich schon mittels Induktion machen.
Aber wenn du es unbedingt ohne willst würde ich dir Gauß empfehlen.
Wie würdest du denn die Determinante mit Gauß berechnen?
Nimm dir diese Matrix und argumentiere, dass nach Gauß genau das Produkt der beiden Determinanten rauskommt.
Aber du musst da sehr gut formulieren, damit es einen wirklich ordentlichen Beweis gibt und nix ungenau ist; mit einer Induktion würdest du meiner Meinung nach sicherer fahren.

lg

Schadow

Bezug
                
Bezug
Beziehung zwischen Det.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:23 Mo 31.10.2011
Autor: kalifat

Ich habe mich jetzt dazu entschlossen es mit Induktion zu machen, ist vielleicht doch der eleganteste Weg.

Induktionsanfang: n=2

[mm] A=2\times2 [/mm] Matrix, [mm] B=1\times1 [/mm] Matrix => [mm] D=1\times1 [/mm] Matrix

detB=B, detD=D

detA=BD-0*C=BD=(detB)*(detD) Also für n=2 stimmt es, für n=1 natürlich auch.

Induktionsbehauptung:

Für [mm] A=(n+1)\times(n+1), B=k\times{k} [/mm] Matrix und [mm] D=(n+1-k)\times(n+1-k) [/mm] gilt detA=(detB)(detD)

Jetzt hänge ich gerade ein wenig, vielleicht könnt ihr mir da weiterhelfen.

Bezug
                        
Bezug
Beziehung zwischen Det.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 02.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beziehung zwischen Det.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:48 Mo 31.10.2011
Autor: felixf

Moin,

> Sei [mm]A=\pmat{ B & C \\ 0 & D}[/mm] eine [mm]n\times{n}[/mm] Matrix, wobei
> B eine [mm]k\times{k}[/mm] Matrix ist, D eine
> [mm](n-k)\times(n-k)-Matrix[/mm] und 0 ausschließlich Nullen
> enthält. Zeige: detA=(detB)(detD)
>
>  Mit der Leibnizformel kann man dieses Beispiel bestimmt
> lösen, ich würde jedoch gerne wissen ob es nicht einen
> eleganteren und schnelleren Weg gibt, ohne Induktion.

ich wuerde mal behaupten: der Weg ueber die Leibnizformel ist sehr elegant :-)

Im Prinzip nutzt du da aus, dass alles was nicht im Bild von [mm] $S_k \times S_{n-k} \to S_n$ [/mm] liegt in der Leibnizformel einen Summanden gibt der 0 ist.

Falls ihr die Determinante ueber Eigenschaften definiert habt (multilinear, normiert, alternierend) kannst du auch wie folgt vorgehen: zeige, dass die Abbildung [mm] $\varphi [/mm] : B [mm] \mapsto \det \pmat{ B & C \\ 0 & D }$ [/mm] multilinear und alternierend ist. Daraus folgt, dass es ein [mm] $\lambda \in [/mm] K$ gibt mit [mm] $\varphi [/mm] = [mm] \lambda \det$. [/mm] Setzt du jetzt $B = [mm] E_k$ [/mm] ein, so steht da [mm] $\lambda [/mm] = [mm] \varphi(E_k)$. [/mm] Du musst jetzt nur noch verifizieren, dass [mm] $\det \pmat{ E_k & C \\ 0 & D }$ [/mm] gerade gleich [mm] $\det [/mm] D$ ist. Das geht uebrigens wieder gut ueber die Leibnizformel, da man sofort sieht das [mm] $\pi \in S_n$ [/mm] nur dann zu einem Summanden [mm] $\neq [/mm] 0$ fuehrt falls [mm] $\pi(j) [/mm] = j$ ist fuer alle $j [mm] \le [/mm] k$.

Aber es ist wohl einfacher, das gleich direkt mit der Leibnizformel zu machen.

LG Felix


Bezug
                
Bezug
Beziehung zwischen Det.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:05 Mo 31.10.2011
Autor: kalifat

Mit der Leibnizformel habe ich es auch schon probiert, komme da jedoch irgendwie nicht weiter;

Wir haben sie folgendermaßen definiert: [mm] detA=det(a_1,...,a_n)=\summe_{\pi\in{S_n}}sgn\pi*a_{\pi_1 1}***a_{\pi_n n} [/mm]

detB und detD natürlich ganz analog, außer das [mm] \pi\in{S_k} [/mm] bei B und [mm] \pi\in{S_{n-k}} [/mm] bei D

Ich muss auch noch berücksichtigen das in der Summe nur solche Permutationen [mm] \pi [/mm] auftreten, für die [mm] \pi({1,2,...,k})={1,2,...,k} [/mm] und daher [mm] \pi({k+1,...,n})={k+1,...,n} [/mm] gilt.

Bezug
                        
Bezug
Beziehung zwischen Det.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mi 02.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de