www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Beziehungen zwischen Parameter
Beziehungen zwischen Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehungen zwischen Parameter: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:43 Sa 17.04.2010
Autor: The-Nik

Aufgabe
Für jede Zahl t [mm] \ge [/mm] 1 ist eine Funktion [mm] f_{t} [/mm] gegeben durch [mm] f_{t}(x) [/mm] = [mm] \bruch{1}{4}(tx-5)^{2}. [/mm] Ihr Schaubild sei [mm] K_{t}. [/mm]
Zeigen sie, dass zwei verschiedene Kurven [mm] K_{t} [/mm] und [mm] K_{t\*} [/mm] außer dem A noch einen weiteren Punkt B [mm] (x_{B}|y_{B}) [/mm] gemeinsam haben.
Welche Werte kann [mm] x_{B} [/mm] annehmen?
Welche Beziehung muss zwischen zwei Parameterwerten t und t* gelten, damit sich [mm] K_{t} [/mm] und [mm] K_{t\*} [/mm] auf der Geraden x = 3 schneiden?

Hallo zusammen,

den Punkt A habe ich voher schon berechnet. Er liegt bei A(0|6,25).

Einen Lösung zur ersten Teilaufgabe habe ich schon: 0 < [mm] x_{B} [/mm] < 5. Ich konnte das aber nur aus den Zeichnungen entnehmen. Wie man das rechnerisch beweist, ist mir ein Rätsel. Vielleicht kann mir hier jemand helfen?

Das mit den Beziehungen ist auch so ne Sache. Ich habe mir das so gedacht. Ich setzt in die Funktion als x-Wert einfach 3 ein. Dann setzte ich zwei Funktionen gleich. Eine mit t und eine mit t*. Aber dann bekomme ich immer nur die Beziehung t = t* heraus. Da muss es doch noch einen anderen Weg geben?

Gruss,
The-Nik

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)




        
Bezug
Beziehungen zwischen Parameter: vorrechnen
Status: (Antwort) fertig Status 
Datum: 09:35 Sa 17.04.2010
Autor: Loddar

Hallo The-Nik!


Gleichsetzen ist der reichtige Weg. Dann solltest Du uns aber mal vorrechnen, wie Du auf Dein Ergebnis kommst:

[mm] $$f_t(x) [/mm] \ = \ [mm] f_{t^\star}(x)$$ [/mm]
[mm] $$\bruch{1}{4}*\left(t*x-5\right)^2 [/mm] \ = \ [mm] \bruch{1}{4}*\left(t^\star*x-5\right)^2$$ [/mm]
Bedenke, dass Du nachher beim Wurzelziehen auch jeweils die Beträge nehmen musst.


Gruß
Loddar


Bezug
                
Bezug
Beziehungen zwischen Parameter: Beweis + neue Frage
Status: (Frage) überfällig Status 
Datum: 12:20 Sa 17.04.2010
Autor: The-Nik

Hey,

Genau das habe ich gemacht. Aber ich habe nicht auf die Beträge geachtet. Aber ist logisch. Das [mm] \bruch{1}{4} [/mm] muss man ja nicht beachten.
Und den Inhalt der Klammer nenne ich mal k

Also ist beim Gleichsetzten das rausgekommen:

[mm] k^{2} [/mm] = [mm] k\*^{2} [/mm]
k = [mm] k\* [/mm]

Aber ich habe eben mal wieder nicht beachtet das es auch -k* sein kann.
Also gilt auch:

[mm] k^{2} [/mm] = [mm] -k\*^{2} [/mm]
k = [mm] -k\* [/mm]

Wenn ich dann den Wert der Klammer einsetzte kommt das heraus:

3t-5 = [mm] 5-3t\* [/mm]
t* = [mm] \bruch{10}{3} [/mm] - [mm] t\* [/mm]

Ist das dann die Beziehung? Wenn ich als Probe ein paar Werte einsetzte klappt alles. Also müsste es richtig sein.

------------------------------------------------------------------------------------------

Nun taucht in der Folgeaufgabe wieder so ein ähnliches Problem mit Beziehungen zwischen Parametern auf. Diesesmal klappt das aber nicht mit gleichsetzten. Kann mir hier jemand beim Ansatz helfen?

Aufgabe:

Welche Beziehung muss zwischen a und [mm] \overline{a} [/mm] erfüllt sein, damit [mm] K_{\overline{a}} [/mm] aus [mm] K_{a} [/mm] durch Spiegelung an der Verbindungsgeraden der Wendepunkte hervorgeht?

Funktion:

[mm] f_{a}(x) [/mm] = [mm] ax^{4} [/mm] - [mm] 6ax^{2} [/mm] +5a + 4 (Form eines W -> 2 Wendepunkte)

Mein Gedanke:

Ich muss zuerst die Wendepunkte in Abhängigkeit von a herausfinden (Ableitung-nullsetzten-usw.)
Jetzt muss ich eine Funktion für die Gerade durch die WP aufstellen. An der wird ja gespiegelt. Doch wie geht es weiter?

Danke für eure Hilfe,
The-Nik

Bezug
                        
Bezug
Beziehungen zwischen Parameter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 19.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de