www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bijektion, erhält WS-keit
Bijektion, erhält WS-keit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektion, erhält WS-keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Fr 29.03.2013
Autor: sissile

Aufgabe
Wieso ist die Bijektion Wahrscheinlichkeitserhaltend bei endlichen Raum mit Gleichverteilung?
ALso für [mm] \phi [/mm] bijektion gilt P(A)= [mm] P(\phi(A)) [/mm] für alle A [mm] \in \mathcal{A} [/mm]

[mm] \mathcal{A}.. [/mm] beobachtbare Ereignisse.

Hallo
DIe Tatsache wird bei einen Beweis verwendet (Reflexionsprinzip).
Leider wird darauf nicht näher eingegangen als : "Dat ist halt so.."
Im Internet sowie in Büchern hab ich nichts zu einem Beweis oder zu Ansätzen gefunden.

LG

        
Bezug
Bijektion, erhält WS-keit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:21 Sa 30.03.2013
Autor: tobit09

Hallo sissile,


> Wieso ist die Bijektion Wahrscheinlichkeitserhaltend bei
> endlichen Raum mit Gleichverteilung?
>  ALso für [mm]\phi[/mm] bijektion gilt P(A)= [mm]P(\phi(A))[/mm] für alle A
> [mm]\in \mathcal{A}[/mm]
>  
> [mm]\mathcal{A}..[/mm] beobachtbare Ereignisse.

Da P eine Gleichverteilung auf einem endlichen Raum ist, gilt [mm] $P(A)=\frac{|A|}{|\Omega|}$ [/mm] und [mm] $P(\phi(A))=\frac{|\phi(A)|}{|\Omega|}$. [/mm] Somit ist die Behauptung gleichbedeutend mit [mm] $|A|=|\phi(A)|$. [/mm]

Sei $n:=|A|$. Dann lässt sich $A$ in der Form [mm] $A=\{a_1,\ldots,a_n\}$ [/mm] mit paarweise verschiedenen [mm] $a_1,\ldots,a_n$ [/mm] schreiben. Es gilt [mm] $\phi(A)=\{\phi(a_1),\ldots,\phi(a_n)\}$ [/mm] und aufgrund der Injektivität von [mm] $\phi$ [/mm] sind [mm] $\phi(a_1),\ldots,\phi(a_n)$ [/mm] paarweise verschieden. Also [mm] $|\phi(A)|=n$. [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Bijektion, erhält WS-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Sa 30.03.2013
Autor: sissile

Hallo,
danke.
Also ist eigentlich nur die Injektivität dafür nötig und die Surj. wird dafür gar nicht gebraucht?



Bezug
                        
Bezug
Bijektion, erhält WS-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Sa 30.03.2013
Autor: tobit09


> Also ist eigentlich nur die Injektivität dafür nötig und
> die Surj. wird dafür gar nicht gebraucht?

Genau.

Bezug
                        
Bezug
Bijektion, erhält WS-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 So 31.03.2013
Autor: fred97

Sei B eine nichtleere Menge und endlich, etwa

    [mm] $B=\{b_1,...,b_n\} [/mm] $  mit [mm] b_i \ne b_j [/mm]  für i [mm] \ne [/mm] j.

Sei weiter $f:B [mm] \to [/mm] B$  eine Abbildung. Dann gilt:

       f ist injektiv  [mm] \gdw [/mm] f ist bijektiv.


Beweis:  [mm] "\Leftarrow" [/mm] ist klar.

Zu [mm] "\Rightarrow": [/mm]

Es ist f(B) [mm] \subseteq [/mm] B und [mm] f(B)=\{f(b_1),...,f(b_n)\}. [/mm] Da f injektiv ist, haben wir:

             [mm] f(b_i) \ne f(b_j) [/mm]  für i [mm] \ne [/mm] j.

f(B) hat also n Elemente und somit ist f(B)=B.


FRED




Bezug
                                
Bezug
Bijektion, erhält WS-keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 So 31.03.2013
Autor: sissile

Jap klar ;)
DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de