www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Bilanzgleichung
Bilanzgleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilanzgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 03.11.2009
Autor: piccolo1986

Aufgabe
Bestimmen Sie die Bilanzgleichungen für das elektrische Feld [mm] \vec{E(z,t)} [/mm] und das magnetische Feld [mm] \vec{B(z,t)} [/mm]
(mit n(s) beliebige differenzierbare und skalare Funktion, [mm] c=\frac{1}{\sqrt{\varepsilon_{0}\mu_{0}}}, [/mm]
[mm] \vec{E}=n(z [/mm] − [mm] ct)\vec{e_{x}} [/mm] und [mm] \vec{B}=\frac{1}{c}n(z [/mm] − [mm] ct)\vec{e_{y}}. [/mm]
Nutzen Sie dabei die Komponentenschreibweise für Vektoren und Tensoren.
a) Zeigen Sie, dass [mm] \vec{E} [/mm] und [mm] \vec{B} [/mm] die Maxwell’schen Gleichungen füur [mm] \rho=0 [/mm] und [mm] \vec{j}=0 [/mm] erfüllt.
b) Bestimmen Sie die Energiedichte u, den Poynting Vektor [mm] \vec{S} [/mm] und den Maxwell’schen Spannungstensor T des gegebenen elektromagnetischen Feldes.
c) Zeigen Sie die Energiebilanz [mm] u'+div\vec{S}=0. [/mm] (dabei sei u' die ableitung nach der Zeit also u Punkt, wusste nicht, wie ich das hier einfügen kann)
d) Zeigen Sie die Impulsbilanz [mm] \frac{1}{c^{2}}\vec{S}'+DivT=0. [/mm]
e) Zusatzaufgabe Beweisen Sie die Relation
[mm] Div\vec{a}(r)\otimes\vec{b}(r)=(div\vec{a})\vec{b}+\vec{a}grad\vec{b}). [/mm]

also prinzipiell konnte ich alle größen aus b) berechnen, hoffe dass ich das richtig gemacht hab. nun wollte ich dann die restlichen aufgaben damit lösen, allerdings macht mir das ableiten dabei schwierigkeiten. wenn ich jetzt z.b. die divergenz von [mm] \vec{S} [/mm] bilde, wie leite ich denn n(z-ct) nach x,y, und z ab, bzw wie nach t.

ich hätte jetzt gedacht, dass die ableitungen nach x und y verschwinden, da n ja nicht davon abhängt und nach der Zeit würde ich erhalten: -c*n'(z-ct). wie leite ich denn nach z ab??

mfg piccolo

        
Bezug
Bilanzgleichung: Differenzieren
Status: (Antwort) fertig Status 
Datum: 21:21 Do 05.11.2009
Autor: physikus89

[mm] \nu [/mm] = [mm] \nu(s) [/mm] = [mm] \nu(z-ct) [/mm] - Das Argument der Funktion ist in diesem Falle also z-ct. D.h. das Differenzieren nach den Ortskoordinaten, im Folgenden für x gezeigt, sieht wie folgt aus:

[mm] \bruch{\partial \nu}{\partial x}=\bruch{\partial \nu (z-ct)}{\partial (z-ct)}*\bruch{\partial (z-ct)}{\partial x} [/mm] in diesem Fall also gleich Null.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de