www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Bild Komplement zu Kern?
Bild Komplement zu Kern? < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild Komplement zu Kern?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Mi 14.01.2009
Autor: Wastelander

Aufgabe
Sei V ein endlich-dimensionaler K -Vektorraum und $ f: V [mm] \to [/mm] V $ sei eine lineare Abbildung mit $f [mm] \circ [/mm] f = f$.
Beweisen Sie:
$Bild(f)$ ist ein komplementärer Unterraum zu $Kern(f)$ in V .

Hallo zusammen!

Ich hänge bei dieser Aufgabe am zweiten Kriterium eines Komplements fest und stehe unter Zeitdruck. Könnte mir jemand eine Methode erklären, wie ich diesen Beweis führe? Hier was ich bisher habe:

z.z.:
(1) Kern(f) [mm] \cap [/mm] Bild(f) = [mm] \{0\} [/mm]
(2) Kern(f) + Bild(f) = V

zu (1):

Seien v [mm] \in [/mm] Kern(f) und w [mm] \in [/mm] Bild(f).
Angenommen [mm] \exists [/mm] w [mm] \in [/mm] Bild(f) mit f(w) = 0 und w [mm] \not= [/mm] 0.
Sei u [mm] \in [/mm] V mit f(u) = w, so gilt

f(w) = 0 [mm] \Rightarrow [/mm] f( f(u) ) = 0 [mm] \Rightarrow_{n. V.} [/mm] f(u) = 0 [mm] \Rightarrow [/mm] w = 0 [mm] \Rightarrow [/mm] Widerspruch!

[mm] \Rightarrow [/mm]  Kern(f) [mm] \cap [/mm] Bild(f) = {0}

Beim zweiten Kriterium fehlt mir wie gesagt momentan die zündende Idee. Kann jemand helfen?

Vielen Dank im Voraus.
LG ~W

        
Bezug
Bild Komplement zu Kern?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Mi 14.01.2009
Autor: Merle23

Kern(f) ist ein UVR von V.
In diesem Falle ist auch Im(f) ein UVR von V.
Jetzt benutze die Dimensionsformel für lineare Abbildungen, Teilaufgabe 1 und einen Widerspruchsbeweis.

Bezug
                
Bezug
Bild Komplement zu Kern?: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:24 Do 15.01.2009
Autor: Wastelander

Hm, ich habe jetzt einige Zeit drangesessen und überlegt. Dass Kern(f) und Bild(f) beides UVR in V sind ist ja klar. Wie mir jedoch die Dimensionsformel weiterhelfen kann will mir nicht einleuchten.

Einen Beweis würde ich so ansetzen, dass ich annehme, es gäbe ein v [mm] \in [/mm] V, das sich nicht als v = u + w ( u [mm] \in [/mm] Kern(f), w [mm] \in [/mm] Bild(f) ) darstellen ließe und dies zu einem Widerspruch führen. Allerdings will sich mir in diesem Falle, wie gesagt, nicht der Nutzen der Dimensionsformel erschließen.

Eventuell ist es einfach schon zu spät, um sich noch damit zu beschäftigen. *g* Wäre jemand bitte so freundlich mir noch einen Hinweis zu geben wie ich diesen Beweis führen kann? Vielleicht schaffe ich es dann ja morgen früh, die Aufgabe zuende zu rechnen.

Besten Dank jetzt schon und gute Nacht. :)

LG ~W

Bezug
                
Bezug
Bild Komplement zu Kern?: Antwort
Status: (Antwort) fertig Status 
Datum: 03:56 Do 15.01.2009
Autor: felixf

Hallo

> Kern(f) ist ein UVR von V.
>  In diesem Falle ist auch Im(f) ein UVR von V.
>  Jetzt benutze die Dimensionsformel für lineare
> Abbildungen, Teilaufgabe 1 und einen Widerspruchsbeweis.

Ja, bei endlich-dimensionalen Vektorraeumen geht das super.

Man kann es allerdings auch direkt zeigen:

Sei $v [mm] \in [/mm] V$. Dann liegt $v - f(v)$ im Kern von $f$, und $f(v)$ im Bild von $f$. Was kann man damit jetzt machen?

LG Felix



Bezug
        
Bezug
Bild Komplement zu Kern?: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Do 15.01.2009
Autor: fred97

Mach Dir zunächst folgendes klar:

Wegen [mm] f^2 [/mm] = f gilt:

kern(I-f) = Bild(f) = { v [mm] \in [/mm] V: f(v) = v  }  ( I = Id. auf V)

Bemerkung: Die Vor. " dimV < [mm] \infty [/mm] " braucht man nicht, man braucht also keine Dimensionsformel und eine Widerspruchsbeweis schon gar nicht.

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de