www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bild einer Matrix
Bild einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Do 03.06.2010
Autor: Bayer04

Aufgabe
Berechnen Sie eine Basis der linearen Hülle der Spaltenvektoren für A=
1 , -1, -5
3 ,  4,   6
-2,  2,  10

Hallo zusammen,
Ich komme bei dieser Aufgabe nicht wirklich weiter und hoffe ihr könnt mir da ein bisschen weiterhelfen.
Also, wir wissen ja dass die lineare Hülle der Spaltenvektoren einer Matrix auch als das Bild der Matrix bezeichnet wird).

D.h. ich berechne müsste zuerst das Bild berechnen. Doch was hat dann die Basis damit zu tun?
Im Internet habe ich nicht wirklich was hilfreiches gefunden.
Ich hoffe ihr könnt mir helfen :(

Ich danke im Voraus.
Mfg

        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Do 03.06.2010
Autor: max3000

Ich glaub die Aufgabe zielt darauf ab dass du eine Basis finden sollst, die nur 2 Vektoren beinhaltet, weil die sicherlich linear abhängig sind.


Prüfe also einfach mal nach ob du den dritten Vektor als Linearkombination der beiden anderen darstellen kannst. Wenn ja, würden die ersten beiden Vektoren eine Basis für den Bildraum bilden.

Suche also [mm] \lambda,\mu [/mm] so dass [mm] w=\lambda*u+\mu*v [/mm]

Bezug
                
Bezug
Bild einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Do 03.06.2010
Autor: Bayer04

es gibt leider kein [mm] \lambda [/mm] oder [mm] \mu [/mm] die diese Gleichung erfüllen.
D.h. keines der Vektoren lässt sch als LK der anderen darstellen.

Ich denke für das Bild der Matrix kann ich meine Ausgangsmatrix transponieren und anschließend Gauss anwenden.
Die Nicht-Null Zeilen wären dann das Bild von A.
DOch das ist sicherlich nicht die Lösung der Aufgabe ooder?
Gesucht ist doch irgendeine Basis -.-

hmm

Bezug
                        
Bezug
Bild einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Do 03.06.2010
Autor: ChopSuey

Moin,

du hast $\ A = [mm] \pmat{ 1 & -1 & -5 \\ 3 & 4 & 6 \\ -2 & 2 & 10 } [/mm] $

Du sollst eine Basis von $\ span [mm] \left( \vektor{ 1 \\ 3 \\ -2 }, \vektor{ -1 \\ 4 \\ 2 }, \vektor{ -5 \\ 6 \\ 10 } \right) [/mm] $ ermitteln.

Wende nun den Gauß-Algorithmus auf die Spalten an. Die nichtverschwindenden Zeilen sind linear maximal linear unabhängig und bilden eine Basis von $\ span [mm] \left( \vektor{ 1 \\ 3 \\ -2 }, \vektor{ -1 \\ 4 \\ 2 }, \vektor{ -5 \\ 6 \\ 10 } \right) [/mm] $

Zu deiner Ausgangsfrage: Die Spalten der Matrix $\ A $ erzeugen den Untervektorraum $\ im \ [mm] \varphi_A [/mm] $ des Zielbereichs der linearen Abbildung, durch die die Matrix eindeutig bestimmt ist.

Dieses Bild ist, wie du bereits sagst, einfach nur die lineare Hülle der Spaltenvektoren.

Gruß
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de