www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Bild einer best. Möbius-Fkt
Bild einer best. Möbius-Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer best. Möbius-Fkt: Suche Bild einer Teilmenge
Status: (Frage) beantwortet Status 
Datum: 01:22 Do 17.04.2008
Autor: Riesenradfahrrad

Aufgabe
Gegeben:
[mm] T:=\overline{\mathbb C}=\mathbb C \cup \{\infty\}\rightarrow\overline{\mathbb C} [/mm] mit
[mm]T(z):=\frac{z-1}{2z+3}[/mm]

Gesucht: Das Bild von [mm]T[Re(z)>1][/mm] und das Urbild von [mm]T^{-1}[|\omega|<1][/mm]

Hallo,

ich habe die Funktion T schon ein bissl angeschaut und bin mit Hilfe von Maple und einigem Rumprobieren darauf gekommen, dass die Bilder von Geraden, die parallel zur imaginären Achse sind und durch [mm]a\in\mathbb R_{>1}[/mm] gehen, auf Kreise abgebildet werden. Die Mittelpunkte dieser Kreise befinden sich auf der reellen Achse zwischen 0 und 0,5. Man kann sie und die zugehörigen Radien anhand vom Bild vom jeweiligen a bestimmen.
Allerdings hilft mir der dabei entstehende, sehr umfangreiche Term nicht, eine schöne Herleitung herbei zumogeln. Es muss jedoch irgendeine geschickte Termumformung geben, sodass mit z=a+iy, a fest, [mm] y\in\mathbb R[/mm] in T eine Parametergleichung/Implizite Form für einen Kreis zu bekommen ist.

Kann mir jemand bei dieser Herleitung helfen (vorausgesetzt meine bisherigen Überlegungen stimmen überhaupt)?

Vielen Dank im Voraus,
Lorenz

        
Bezug
Bild einer best. Möbius-Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 02:48 Do 17.04.2008
Autor: Marcel

Hallo,

was Du da ansprichst ist ein Satz, der in der Funktionentheorie sehr bekannt ist. Es gibt den Satz der Kreisverwandtschaft bilinearer Funktionen (so bezeichnet man die Möbiustransformationen auch). Er besagt, dass allgemeine Kreislinien in [mm] $\IC$ [/mm] durch bilineare Funktionen auf allg. Kreislinien abgebildet werden. Unter einer allg. Kreislinie in [mm] $\IC$ [/mm] versteht man dann entweder eine Gerade oder eine Kreislinie (d.h. Rand eines Kreises).

Eine allg. Kreislinie läßt sich darstellen durch

[mm] $Ax+By+C(x^2+y^2)+D=0$, [/mm] wobei $A,B,C$ nicht alle Null, wobei $x=Re(z)$ und $y=Im(z)$, man also [mm] $\IC=\IR^2$ [/mm] identifiziert.

Nun geht man hin, und zeigt, dass sich jede bilineare Funktionen als Verknüpfungen von "einfachen" bilinearen Abbildungen, nämlich Drehstreckung, Verschiebung und Stürzung schreiben läßt. Daher genügt es, den Satz für Stürzungen zu beweisen. Und dann ist es fast banal, wenn man dann [mm] $w=\frac{1}{z}=u+i*v$ [/mm] schreibt und dann zeigt, dass dann auch $(u,v)$ auf einer Kreislinie liegt (dabei Fallunterscheidung: $0$ liege auf der (natürlich: Ausgangs-)Kreislinie; $0$ sei nicht auf der Kreislinie). Aber vielleicht geht das ein wenig zu weit...

> Gegeben:
>  [mm]T:=\overline{\mathbb C}=\mathbb C \cup \{\infty\}\rightarrow\overline{\mathbb C}[/mm]
> mit
>  [mm]T(z):=\frac{z-1}{2z+3}[/mm]

Schauen wir doch mal, vll. reicht Dir ja schon das folgende:
[mm] $T(z)=\frac{z-1}{2z+3}=\frac{1}{2}+\frac{z-1}{2z+3}-\frac{1}{2}=\frac{1}{2}+\frac{2z-2-(2z+3)}{2z+3}=\frac{1}{2}-\frac{5}{2z+3}$ [/mm]

Dann kann man $T$ schreiben als:

$T=f [mm] \circ [/mm] g [mm] \circ [/mm] h [mm] \circ [/mm] k$ mit

[mm] $f(z)=\frac{1}{2}+z$, [/mm] $g(z)=-5*z$, [mm] $h(z)=\frac{1}{z}$ [/mm] und $k(z)=2*z+3$

$f$ ist eine Verschiebung, $g$ ist eine (Dreh)-Streckung, $h$ ist eine Stürzung und $k$ ist wieder eine Zusammensetzung aus einer Verschiebung und einer (Dreh-)Streckung.

Jetzt musst Du Dir halt überlegen, ob Dir das reicht, um damit das Bild von [mm] $R:=\{z: Re(z) > 1\}$ [/mm] unter $T$ zu bestimmen:

Was ist k(R)? Was folgt daraus für $h(k(R))$ usw.

Und ich hoffe mal, dass Du analog für das Urbild von [mm] $\mathcal{D}:=\{z \in \IC: |z|<1\}$ [/mm] vorgehst:

Was ist [mm] $f^{-1}(\mathcal{D})$? [/mm] Was folgt dann für [mm] $g^{-1}(f^{-1}(\mathcal{D}))$... [/mm]

(Beachte: $(f [mm] \circ g)^{-1}(M)=g^{-1}(f^{-1}(M))$, [/mm] und wenn Du z.B. $f [mm] \circ [/mm] g [mm] \circ [/mm] h [mm] \circ [/mm] k$ hast, dreht sich quasi die Reihenfolge der Funktionen um und überall kommt ein hoch (-1) dran, für das Urbild der Verknüpfungen zu "errechnen".)

P.S.:
Was ich oben schonmal angesprochen und benutzt habe:
Eine jede Möbiustransformation $z [mm] \mapsto \frac{az+b}{cz+d}$ [/mm] läßt sich als Verknüpfung der 3 oben angesprochenen "einfachen" Möbiustransformationen schreiben:
Im Falle $c=0$ solltest Du das sehen, im Falle $c [mm] \not=0$ [/mm] kommst Du (mit analogen Umformungen, wie ich so oben gemacht habe) zu

[mm] $\frac{az+b}{cz+d}=\frac{a}{c}-\frac{ad-bc}{c}*\frac{1}{cz+d}$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Bild einer best. Möbius-Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:49 Sa 19.04.2008
Autor: Riesenradfahrrad

Hallo Marcel,

herzlichen Dank für die schnelle Antwort, hat mir sehr geholfen!

Gruß,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de